Tensile properties of the mandibular condylar cartilage - PubMed (original) (raw)
. 2008 Feb;130(1):011009.
doi: 10.1115/1.2838062.
Affiliations
- PMID: 18298185
- DOI: 10.1115/1.2838062
Tensile properties of the mandibular condylar cartilage
M Singh et al. J Biomech Eng. 2008 Feb.
Abstract
Mandibular condylar cartilage plays a crucial role in temporomandibular joint (TMJ) function, which includes facilitating articulation with the temporomandibular joint disc and reducing loads on the underlying bone. The cartilage experiences considerable tensile forces due to direct compression and shear. However, only scarce information is available about its tensile properties. The present study aims to quantify the biomechanical characteristics of the mandibular condylar cartilage to aid future three-dimensional finite element modeling and tissue engineering studies. Porcine condylar cartilage was tested under uniaxial tension in two directions, anteroposterior and mediolateral, with three regions per direction. Stress relaxation behavior was modeled using the Kelvin model and a second-order generalized Kelvin model, and collagen fiber orientation was determined by polarized light microscopy. The stress relaxation behavior of the tissue was biexponential in nature. The tissue exhibited greater stiffness in the anteroposterior direction than in the mediolateral direction as reflected by higher Young's (2.4 times), instantaneous (1.9 times), and relaxed (1.9 times) moduli. No significant differences were observed among the regional properties in either direction. The predominantly anteroposterior macroscopic fiber orientation in the fibrous zone of condylar cartilage correlated well with the biomechanical findings. The condylar cartilage appears to be less stiff and less anisotropic under tension than the anatomically and functionally related TMJ disc. The anisotropy of the condylar cartilage, as evidenced by tensile behavior and collagen fiber orientation, suggests that the shear environment of the TMJ exposes the condylar cartilage to predominantly but not exclusively anteroposterior loading.
Similar articles
- Biomechanical properties of the mandibular condylar cartilage and their relevance to the TMJ disc.
Singh M, Detamore MS. Singh M, et al. J Biomech. 2009 Mar 11;42(4):405-17. doi: 10.1016/j.jbiomech.2008.12.012. Epub 2009 Feb 6. J Biomech. 2009. PMID: 19200995 Review. - Stress relaxation behavior of mandibular condylar cartilage under high-strain compression.
Singh M, Detamore MS. Singh M, et al. J Biomech Eng. 2009 Jun;131(6):061008. doi: 10.1115/1.3118776. J Biomech Eng. 2009. PMID: 19449962 - Dynamic shear behavior of mandibular condylar cartilage is dependent on testing direction.
Tanaka E, Iwabuchi Y, Rego EB, Koolstra JH, Yamano E, Hasegawa T, Kawazoe A, Kawai N, Tanne K. Tanaka E, et al. J Biomech. 2008;41(5):1119-23. doi: 10.1016/j.jbiomech.2007.12.012. Epub 2008 Feb 1. J Biomech. 2008. PMID: 18242620 - [Tensile mechanics of mandibular condylar cartilage].
Kang H, Bao G, Dong Y, Yi X, Chao Y, Chen M. Kang H, et al. Hua Xi Kou Qiang Yi Xue Za Zhi. 2000 Apr;18(2):85-7. Hua Xi Kou Qiang Yi Xue Za Zhi. 2000. PMID: 12539336 Chinese. - Structure and function of the temporomandibular joint disc: implications for tissue engineering.
Detamore MS, Athanasiou KA. Detamore MS, et al. J Oral Maxillofac Surg. 2003 Apr;61(4):494-506. doi: 10.1053/joms.2003.50096. J Oral Maxillofac Surg. 2003. PMID: 12684970 Review.
Cited by
- Mandibular Cartilage Collagen Network Nanostructure: Insights for Regeneration.
Vanden Berg-Foels WS. Vanden Berg-Foels WS. Cartilage. 2016 Jul;7(3):274-83. doi: 10.1177/1947603515611948. Epub 2015 Oct 26. Cartilage. 2016. PMID: 27375843 Free PMC article. - Evaluation of apparent fracture toughness of articular cartilage and hydrogels.
Xiao Y, Rennerfeldt DA, Friis EA, Gehrke SH, Detamore MS. Xiao Y, et al. J Tissue Eng Regen Med. 2017 Jan;11(1):121-128. doi: 10.1002/term.1892. Epub 2014 Apr 2. J Tissue Eng Regen Med. 2017. PMID: 24700577 Free PMC article. - Type V collagen regulates the structure and biomechanics of TMJ condylar cartilage: A fibrous-hyaline hybrid.
Chandrasekaran P, Kwok B, Han B, Adams SM, Wang C, Chery DR, Mauck RL, Dyment NA, Lu XL, Frank DB, Koyama E, Birk DE, Han L. Chandrasekaran P, et al. Matrix Biol. 2021 Aug;102:1-19. doi: 10.1016/j.matbio.2021.07.002. Epub 2021 Jul 24. Matrix Biol. 2021. PMID: 34314838 Free PMC article. - IL-1β Damages Fibrocartilage and Upregulates MMP-13 Expression in Fibrochondrocytes in the Condyle of the Temporomandibular Joint.
Tabeian H, Betti BF, Dos Santos Cirqueira C, de Vries TJ, Lobbezoo F, Ter Linde AV, Zandieh-Doulabi B, Koenders MI, Everts V, Bakker AD. Tabeian H, et al. Int J Mol Sci. 2019 May 7;20(9):2260. doi: 10.3390/ijms20092260. Int J Mol Sci. 2019. PMID: 31067826 Free PMC article. - Activation of β-catenin signalling leads to temporomandibular joint defects.
Wang M, Li S, Xie W, Shen J, Im HJ, Holz JD, Wang M, Diekwisch TG, Chen D. Wang M, et al. Eur Cell Mater. 2014 Oct 23;28:223-35. doi: 10.22203/ecm.v028a15. Eur Cell Mater. 2014. PMID: 25340802 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources