Thermodynamic interactions in double-network hydrogels - PubMed (original) (raw)
. 2008 Apr 3;112(13):3903-9.
doi: 10.1021/jp710284e. Epub 2008 Mar 11.
Affiliations
- PMID: 18331022
- DOI: 10.1021/jp710284e
Thermodynamic interactions in double-network hydrogels
Taiki Tominaga et al. J Phys Chem B. 2008.
Abstract
Double-network hydrogels (DN-gels) prepared from the combination of a moderately cross-linked anionic polyelectrolyte (PE) and an uncross-linked linear polymer solution (NP) exhibit mechanical properties such as fracture toughness that are intriguingly superior to that of their individual constituents. The scheme of double-network preparation, however, is not equally successful for all polyelectrolyte/neutral polymer pairs. A successful example is the combination of poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS) cross-linked network and linear polyacrylamide (PAAm), which results in DN-gels with fracture strength under compression approaching that of articular cartilage ( approximately 20 MPa). Small-angle neutron scattering was used to determine the thermodynamic interaction parameters for PAMPS and PAAm in water as a first step to elucidate the molecular origin responsible for this superior property. Measurements on PAMPS/PAAm DN-gels and their solution blend counterparts indicate that the two polymers interact favorably with each other while in water. This favorable PAMPS/PAAm interaction given by the condition chi(PE-NP) < chi(PE-water) <chi(NP-water), where chi is the Flory-Huggins interaction parameter, is consistent with some of the salient features of the DN structure revealed by SANS, and it may also contribute to the ultimate mechanical properties of DN-gels.
Similar articles
- Determination of fracture energy of high strength double network hydrogels.
Tanaka Y, Kuwabara R, Na YH, Kurokawa T, Gong JP, Osada Y. Tanaka Y, et al. J Phys Chem B. 2005 Jun 16;109(23):11559-62. doi: 10.1021/jp0500790. J Phys Chem B. 2005. PMID: 16852418 - Effect of polymer entanglement on the toughening of double network hydrogels.
Tsukeshiba H, Huang M, Na YH, Kurokawa T, Kuwabara R, Tanaka Y, Furukawa H, Osada Y, Gong JP. Tsukeshiba H, et al. J Phys Chem B. 2005 Sep 1;109(34):16304-9. doi: 10.1021/jp052419n. J Phys Chem B. 2005. PMID: 16853073 - Biomechanical properties of high-toughness double network hydrogels.
Yasuda K, Ping Gong J, Katsuyama Y, Nakayama A, Tanabe Y, Kondo E, Ueno M, Osada Y. Yasuda K, et al. Biomaterials. 2005 Jul;26(21):4468-75. doi: 10.1016/j.biomaterials.2004.11.021. Biomaterials. 2005. PMID: 15701376 - Theoretical and computational modeling of self-oscillating polymer gels.
Yashin VV, Balazs AC. Yashin VV, et al. J Chem Phys. 2007 Mar 28;126(12):124707. doi: 10.1063/1.2672951. J Chem Phys. 2007. PMID: 17411152 Review. - Host tissue interaction, fate, and risks of degradable and nondegradable gel fillers.
Christensen LH. Christensen LH. Dermatol Surg. 2009 Oct;35 Suppl 2:1612-9. doi: 10.1111/j.1524-4725.2009.01338.x. Dermatol Surg. 2009. PMID: 19807755 Review.
Cited by
- Mechanical Model for Super-Anisotropic Swelling of the Multi-Cylindrical PDGI/PAAm Gels.
Nakajima T, Mito K, Gong JP. Nakajima T, et al. Polymers (Basel). 2023 Mar 24;15(7):1624. doi: 10.3390/polym15071624. Polymers (Basel). 2023. PMID: 37050238 Free PMC article. - Inverse mechanical-swelling coupling of a highly deformed double-network gel.
Imaoka C, Nakajima T, Indei T, Iwata M, Hong W, Marcellan A, Gong JP. Imaoka C, et al. Sci Adv. 2023 May 10;9(19):eabp8351. doi: 10.1126/sciadv.abp8351. Epub 2023 May 10. Sci Adv. 2023. PMID: 37163599 Free PMC article. - Hydrogels Based on Polyacrylamide and Calcium Alginate: Thermodynamic Compatibility of Interpenetrating Networks, Mechanical, and Electrical Properties.
Safronov AP, Kurilova NM, Adamova LV, Shklyar TF, Blyakhman FA, Zubarev AY. Safronov AP, et al. Biomimetics (Basel). 2023 Jun 28;8(3):279. doi: 10.3390/biomimetics8030279. Biomimetics (Basel). 2023. PMID: 37504167 Free PMC article. - Recent Progress on Plant-Inspired Soft Robotics with Hydrogel Building Blocks: Fabrication, Actuation and Application.
Xu Z, Zhou Y, Zhang B, Zhang C, Wang J, Wang Z. Xu Z, et al. Micromachines (Basel). 2021 May 24;12(6):608. doi: 10.3390/mi12060608. Micromachines (Basel). 2021. PMID: 34074051 Free PMC article. Review. - Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.
DeKosky BJ, Dormer NH, Ingavle GC, Roatch CH, Lomakin J, Detamore MS, Gehrke SH. DeKosky BJ, et al. Tissue Eng Part C Methods. 2010 Dec;16(6):1533-42. doi: 10.1089/ten.tec.2009.0761. Epub 2010 Jul 13. Tissue Eng Part C Methods. 2010. PMID: 20626274 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous