Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences - PubMed (original) (raw)
. 1991 Sep 25;266(27):18051-7.
Affiliations
- PMID: 1833391
Free article
Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences
J Martin et al. J Biol Chem. 1991.
Free article
Abstract
The transport of precursor proteins into mitochondria requires an energized inner membrane. We report here that the import of various precursor proteins showed a differential sensitivity to treatment of the mitochondria with the uncoupler carbonyl cyanide m-chlorophenylhydrazone. The differential inhibition by carbonyl cyanide m-chlorophenylhydrazone was not influenced by the length of the precursor, the presence of mature protein parts, or the folding state of the precursor but was specific for the presequence. Moreover, only the membrane potential delta psi and not the total proton motive force was required for the transport of precursors, indicating that protein translocation across the inner membrane is not driven by a movement of protons. We conclude that delta psi (negative inside) is needed for the translocation of the positively charged presequences, possibly via an electrophoretic effect.
Similar articles
- Precursor binding to yeast mitochondria. A general role for the outer membrane protein Mas70p.
Hines V, Schatz G. Hines V, et al. J Biol Chem. 1993 Jan 5;268(1):449-54. J Biol Chem. 1993. PMID: 8380165 - Transport of proteins into mitochondria: a potassium diffusion potential is able to drive the import of ADP/ATP carrier.
Pfanner N, Neupert W. Pfanner N, et al. EMBO J. 1985 Nov;4(11):2819-25. doi: 10.1002/j.1460-2075.1985.tb04009.x. EMBO J. 1985. PMID: 2998756 Free PMC article. - Mitochondrial protein import.
Geli V, Glick B. Geli V, et al. J Bioenerg Biomembr. 1990 Dec;22(6):725-51. doi: 10.1007/BF00786928. J Bioenerg Biomembr. 1990. PMID: 2092036 Review. - Recognition and binding of mitochondrial presequences during the import of proteins into mitochondria.
Roise D. Roise D. J Bioenerg Biomembr. 1997 Feb;29(1):19-27. doi: 10.1023/a:1022403604273. J Bioenerg Biomembr. 1997. PMID: 9067798 Review.
Cited by
- Structural changes in the mitochondrial Tim23 channel are coupled to the proton-motive force.
Malhotra K, Sathappa M, Landin JS, Johnson AE, Alder NN. Malhotra K, et al. Nat Struct Mol Biol. 2013 Aug;20(8):965-72. doi: 10.1038/nsmb.2613. Epub 2013 Jul 7. Nat Struct Mol Biol. 2013. PMID: 23832274 - A nuclear-based quality control pathway for non-imported mitochondrial proteins.
Shakya VP, Barbeau WA, Xiao T, Knutson CS, Schuler MH, Hughes AL. Shakya VP, et al. Elife. 2021 Mar 18;10:e61230. doi: 10.7554/eLife.61230. Elife. 2021. PMID: 33734083 Free PMC article. - Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system.
Verghese J, Abrams J, Wang Y, Morano KA. Verghese J, et al. Microbiol Mol Biol Rev. 2012 Jun;76(2):115-58. doi: 10.1128/MMBR.05018-11. Microbiol Mol Biol Rev. 2012. PMID: 22688810 Free PMC article. Review. - Residues of Tim44 involved in both association with the translocon of the inner mitochondrial membrane and regulation of mitochondrial Hsp70 tethering.
Schiller D, Cheng YC, Liu Q, Walter W, Craig EA. Schiller D, et al. Mol Cell Biol. 2008 Jul;28(13):4424-33. doi: 10.1128/MCB.00007-08. Epub 2008 Apr 21. Mol Cell Biol. 2008. PMID: 18426906 Free PMC article. - Mitochondrial recoupling: a novel therapeutic strategy for cancer?
Baffy G, Derdak Z, Robson SC. Baffy G, et al. Br J Cancer. 2011 Aug 9;105(4):469-74. doi: 10.1038/bjc.2011.245. Epub 2011 Jun 28. Br J Cancer. 2011. PMID: 21712825 Free PMC article. Review.