The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response - PubMed (original) (raw)

Review

The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response

Bradley S Schneider et al. Trans R Soc Trop Med Hyg. 2008 May.

Abstract

Arthropod-borne (arbo-) viruses have emerged as a major human health concern. Viruses transmitted by mosquitoes are the cause of the most serious and widespread arbovirus diseases worldwide and are ubiquitous in both feral and urban settings. Arboviruses, including dengue and West Nile virus, are injected into vertebrates within mosquito saliva during mosquito feeding. Mosquito saliva contains anti-haemostatic, anti-inflammatory and immunomodulatory molecules that facilitate the acquisition of a blood meal. Collectively, studies investigating the effects of mosquito saliva on the vertebrate immune response suggest that at high concentrations salivary proteins are immmunosuppressive, whereas lower concentrations modulate the immune response; specifically, T(H)1 and antiviral cytokines are downregulated, while T(H)2 cytokines are unaffected or amplified. As a consequence, mosquito saliva can impair the antiviral immune response, thus affecting viral infectiousness and host survival. Mounting evidence suggests that this is a mechanism whereby arbovirus pathogenicity is enhanced. In a range of disease models, including various hosts, mosquito species and arthropod-borne viruses, mosquito saliva and/or feeding is associated with a potentiation of virus infection. Compared with arbovirus infection initiated in the absence of the mosquito or its saliva, infection via mosquito saliva leads to an increase in virus transmission, host susceptibility, viraemia, disease progression and mortality.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest: None declared.

Similar articles

Cited by

References

    1. Amino R, Thiberge S, Blazquez S, Baldacci P, Renaud O, Shorte S, Menard R. Imaging malaria sporozoites in the dermis of the mammalian host. Nat Protoc. 2007;2:1705–1712. - PubMed
    1. Arca B, Lombardo F, Lanfrancotti A, Spanos L, Veneri M, Louis C, Coluzzi M. A cluster of four D7-related genes is expressed in the salivary glands of the African malaria vector Anopheles gambiae. Insect Mol Biol. 2002;11:47–55. - PubMed
    1. Arca B, Lombardo F, Valenzuela JG, Francischetti IM, Marinotti O, Coluzzi M, Ribeiro JM. An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J Exp Biol. 2005;208:3971–3986. - PubMed
    1. Arca B, Lombardo F, Francischetti IM, Pham VM, Mestres-Simon M, Andersen JF, Ribeiro JM. An insight into the sialome of the adult female mosquito Aedes albopictus. Insect Biochem Mol Biol. 2007;37:107–127. - PubMed
    1. Arca B, Lombardo F, Capurro M, della Torre A, Spanos L, Dimopoulos G, Louis C, James AA, Coluzzi M. Salivary gland-specific gene expression in the malaria vector Anopheles gambiae. Parassitologia. 1999;41:483–487. - PubMed

Publication types

MeSH terms

Grants and funding

LinkOut - more resources