The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response - PubMed (original) (raw)
Review
The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response
Bradley S Schneider et al. Trans R Soc Trop Med Hyg. 2008 May.
Abstract
Arthropod-borne (arbo-) viruses have emerged as a major human health concern. Viruses transmitted by mosquitoes are the cause of the most serious and widespread arbovirus diseases worldwide and are ubiquitous in both feral and urban settings. Arboviruses, including dengue and West Nile virus, are injected into vertebrates within mosquito saliva during mosquito feeding. Mosquito saliva contains anti-haemostatic, anti-inflammatory and immunomodulatory molecules that facilitate the acquisition of a blood meal. Collectively, studies investigating the effects of mosquito saliva on the vertebrate immune response suggest that at high concentrations salivary proteins are immmunosuppressive, whereas lower concentrations modulate the immune response; specifically, T(H)1 and antiviral cytokines are downregulated, while T(H)2 cytokines are unaffected or amplified. As a consequence, mosquito saliva can impair the antiviral immune response, thus affecting viral infectiousness and host survival. Mounting evidence suggests that this is a mechanism whereby arbovirus pathogenicity is enhanced. In a range of disease models, including various hosts, mosquito species and arthropod-borne viruses, mosquito saliva and/or feeding is associated with a potentiation of virus infection. Compared with arbovirus infection initiated in the absence of the mosquito or its saliva, infection via mosquito saliva leads to an increase in virus transmission, host susceptibility, viraemia, disease progression and mortality.
Conflict of interest statement
Conflicts of interest: None declared.
Similar articles
- Aedes Mosquito Salivary Components and Their Effect on the Immune Response to Arboviruses.
Guerrero D, Cantaert T, Missé D. Guerrero D, et al. Front Cell Infect Microbiol. 2020 Aug 7;10:407. doi: 10.3389/fcimb.2020.00407. eCollection 2020. Front Cell Infect Microbiol. 2020. PMID: 32850501 Free PMC article. Review. - Parameters of Mosquito-Enhanced West Nile Virus Infection.
Moser LA, Lim PY, Styer LM, Kramer LD, Bernard KA. Moser LA, et al. J Virol. 2015 Oct 14;90(1):292-9. doi: 10.1128/JVI.02280-15. Print 2016 Jan 1. J Virol. 2015. PMID: 26468544 Free PMC article. - Potentiation of West Nile encephalitis by mosquito feeding.
Schneider BS, Soong L, Girard YA, Campbell G, Mason P, Higgs S. Schneider BS, et al. Viral Immunol. 2006 Spring;19(1):74-82. doi: 10.1089/vim.2006.19.74. Viral Immunol. 2006. PMID: 16553552 - Prior exposure to uninfected mosquitoes enhances mortality in naturally-transmitted West Nile virus infection.
Schneider BS, McGee CE, Jordan JM, Stevenson HL, Soong L, Higgs S. Schneider BS, et al. PLoS One. 2007 Nov 14;2(11):e1171. doi: 10.1371/journal.pone.0001171. PLoS One. 2007. PMID: 18000543 Free PMC article. - Mosquito Saliva: The Hope for a Universal Arbovirus Vaccine?
Manning JE, Morens DM, Kamhawi S, Valenzuela JG, Memoli M. Manning JE, et al. J Infect Dis. 2018 Jun 5;218(1):7-15. doi: 10.1093/infdis/jiy179. J Infect Dis. 2018. PMID: 29617849 Free PMC article. Review.
Cited by
- Immunization with Culex tarsalis mosquito salivary gland extract modulates West Nile virus infection and disease in mice.
Machain-Williams C, Reagan K, Wang T, Zeidner NS, Blair CD. Machain-Williams C, et al. Viral Immunol. 2013 Feb;26(1):84-92. doi: 10.1089/vim.2012.0051. Epub 2013 Jan 30. Viral Immunol. 2013. PMID: 23362833 Free PMC article. - Visualizing non infectious and infectious Anopheles gambiae blood feedings in naive and saliva-immunized mice.
Choumet V, Attout T, Chartier L, Khun H, Sautereau J, Robbe-Vincent A, Brey P, Huerre M, Bain O. Choumet V, et al. PLoS One. 2012;7(12):e50464. doi: 10.1371/journal.pone.0050464. Epub 2012 Dec 13. PLoS One. 2012. PMID: 23272060 Free PMC article. - Impact of mosquito bites on asexual parasite density and gametocyte prevalence in asymptomatic chronic Plasmodium falciparum infections and correlation with IgE and IgG titers.
Lawaly R, Konate L, Marrama L, Dia I, Diallo D, Diène Sarr F, Schneider BS, Casademont I, Diallo M, Brey PT, Sakuntabhai A, Mecheri S, Paul R. Lawaly R, et al. Infect Immun. 2012 Jun;80(6):2240-6. doi: 10.1128/IAI.06414-11. Epub 2012 Mar 26. Infect Immun. 2012. PMID: 22451520 Free PMC article. - Pathogenicity of West Nile Virus Lineage 1 to German Poultry.
Holicki CM, Michel F, Vasić A, Fast C, Eiden M, Răileanu C, Kampen H, Werner D, Groschup MH, Ziegler U. Holicki CM, et al. Vaccines (Basel). 2020 Sep 5;8(3):507. doi: 10.3390/vaccines8030507. Vaccines (Basel). 2020. PMID: 32899581 Free PMC article. - The Host Non-Coding RNA Response to Alphavirus Infection.
Behnia M, Bradfute SB. Behnia M, et al. Viruses. 2023 Feb 18;15(2):562. doi: 10.3390/v15020562. Viruses. 2023. PMID: 36851776 Free PMC article. Review.
References
- Amino R, Thiberge S, Blazquez S, Baldacci P, Renaud O, Shorte S, Menard R. Imaging malaria sporozoites in the dermis of the mammalian host. Nat Protoc. 2007;2:1705–1712. - PubMed
- Arca B, Lombardo F, Lanfrancotti A, Spanos L, Veneri M, Louis C, Coluzzi M. A cluster of four D7-related genes is expressed in the salivary glands of the African malaria vector Anopheles gambiae. Insect Mol Biol. 2002;11:47–55. - PubMed
- Arca B, Lombardo F, Valenzuela JG, Francischetti IM, Marinotti O, Coluzzi M, Ribeiro JM. An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J Exp Biol. 2005;208:3971–3986. - PubMed
- Arca B, Lombardo F, Francischetti IM, Pham VM, Mestres-Simon M, Andersen JF, Ribeiro JM. An insight into the sialome of the adult female mosquito Aedes albopictus. Insect Biochem Mol Biol. 2007;37:107–127. - PubMed
- Arca B, Lombardo F, Capurro M, della Torre A, Spanos L, Dimopoulos G, Louis C, James AA, Coluzzi M. Salivary gland-specific gene expression in the malaria vector Anopheles gambiae. Parassitologia. 1999;41:483–487. - PubMed
Publication types
MeSH terms
Grants and funding
- R01 AI047246/AI/NIAID NIH HHS/United States
- R01 AI047246-03/AI/NIAID NIH HHS/United States
- T01/CCT622892/PHS HHS/United States
- R01 AI047246-02/AI/NIAID NIH HHS/United States
- R01 AI047246-01A2/AI/NIAID NIH HHS/United States
- R01AI47246/AI/NIAID NIH HHS/United States
- R01 AI047246-04/AI/NIAID NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials