Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol - PubMed (original) (raw)

Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol

Zhiqiang Pan et al. BMC Med Genomics. 2008.

Abstract

Background: Pterostilbene, a naturally occurring phenolic compound produced by agronomically important plant genera such as Vitis and Vacciunium, is a phytoalexin exhibiting potent antifungal activity. Additionally, recent studies have demonstrated several important pharmacological properties associated with pterostilbene. Despite this, a systematic study of the effects of pterostilbene on eukaryotic cells at the molecular level has not been previously reported. Thus, the aim of the present study was to identify the cellular pathways affected by pterostilbene by performing transcript profiling studies, employing the model yeast Saccharomyces cerevisiae.

Methods: S. cerevisiae strain S288C was exposed to pterostilbene at the IC50 concentration (70 muM) for one generation (3 h). Transcript profiling experiments were performed on three biological replicate samples using the Affymetrix GeneChip Yeast Genome S98 Array. The data were analyzed using the statistical methods available in the GeneSifter microarray data analysis system. To validate the results, eleven differentially expressed genes were further examined by quantitative real-time RT-PCR, and S. cerevisiae mutant strains with deletions in these genes were analyzed for altered sensitivity to pterostilbene.

Results: Transcript profiling studies revealed that pterostilbene exposure significantly down-regulated the expression of genes involved in methionine metabolism, while the expression of genes involved in mitochondrial functions, drug detoxification, and transcription factor activity were significantly up-regulated. Additional analyses revealed that a large number of genes involved in lipid metabolism were also affected by pterostilbene treatment.

Conclusion: Using transcript profiling, we have identified the cellular pathways targeted by pterostilbene, an analog of resveratrol. The observed response in lipid metabolism genes is consistent with its known hypolipidemic properties, and the induction of mitochondrial genes is consistent with its demonstrated role in apoptosis in human cancer cell lines. Furthermore, our data show that pterostilbene has a significant effect on methionine metabolism, a previously unreported effect for this compound.

PubMed Disclaimer

Figures

Figure 1

Figure 1

Determination of IC50 concentration for pterostilbene in yeast cells. Results are shown from a microtiter assay (experiment 1) and three independent assays performed in large scale cultures (experiment 2–4) as described in "Methods".

Figure 2

Figure 2

Summary of gene expression responses to pterostilbene in the sulfur metabolism pathway. Methionine biosynthetic pathway and corresponding genes are based on Thorsen et al. [66] and the Saccharomyces Genome Database [25]. Genes shown in boldface in the pathway are those affected by pterostilbene. The up- and down-regulated genes were indicated by arrows, (↑) and (↓).

Figure 3

Figure 3

Quantitative real-time RT-PCR analysis of genes identified as differentially expressed by microarray experiments. Assays were performed in triplicate as described previously [18]. Data were normalized to an internal control (18S rRNA) and the ΔΔCT method was used to obtain the relative expression level for each gene. Data are shown as mean ± standard deviation (SD). "Ctrl" represents samples treated with solvent (0.25% DMSO) alone.

Figure 4

Figure 4

Growth of selected yeast mutant strains in the presence of pterostilbene. A parent strain BY4742 and 11 mutants (upc2Δ, oaf1Δ, rsb1Δ, ino4Δ, met3Δ, azr1Δ, pdr3Δ, rtg1Δ, rtg3Δ, rlm1Δ, and bag7Δ) were analyzed. Serial dilutions of overnight cultures were spotted onto solid YPD (pH 7.0, MOPS buffered) agar plates containing either 1% DMSO or 110 μM pterostilbene, and the plates were photographed after incubation for 2 days at 30°C.

References

    1. Sehadri R. Polyphenols of Pterocarpus and Dalbergia woods. Phytochemistry. 1972;11:881–898. doi: 10.1016/S0031-9422(00)88430-7. - DOI
    1. Maurya R, Ray AB, Duah FK, Slatkin DJ, Schiff PL., Jr Constituents of Pterocarpus marsupium. Journal of Natural Products. 1984;47:179–181. doi: 10.1021/np50031a029. - DOI
    1. Langcake P, Cornford CA, Pryce RJ. Identification of pterostilbene as a phytoalexin from Vitis vinifera leaves. Phytochemistry. 1979;18:1025–1027. doi: 10.1016/S0031-9422(00)91470-5. - DOI
    1. Adrian M, Jeandet P, Douillet-Breuil AC, Tesson L, Bessis R. Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J Agric Food Chem. 2000;48:6103–6105. doi: 10.1021/jf0009910. - DOI - PubMed
    1. Pezet R, Pont V. Identification of pterostilbene in grape berries of Vitis vinifera. Plant Physiol Biochem (Paris) 1988;26:603–607.

LinkOut - more resources