Degradation of cellulose by basidiomycetous fungi - PubMed (original) (raw)
Review
Degradation of cellulose by basidiomycetous fungi
Petr Baldrian et al. FEMS Microbiol Rev. 2008 May.
Free article
Abstract
Cellulose is the main polymeric component of the plant cell wall, the most abundant polysaccharide on Earth, and an important renewable resource. Basidiomycetous fungi belong to its most potent degraders because many species grow on dead wood or litter, in environment rich in cellulose. Fungal cellulolytic systems differ from the complex cellulolytic systems of bacteria. For the degradation of cellulose, basidiomycetes utilize a set of hydrolytic enzymes typically composed of endoglucanase, cellobiohydrolase and beta-glucosidase. In some species, the absence of cellobiohydrolase is substituted by the production of processive endoglucanases combining the properties of both of these enzymes. In addition, systems producing hydroxyl radicals based on cellobiose dehydrogenase, quinone redox cycling or glycopeptide-based Fenton reaction are involved in the degradation of several plant cell wall components, including cellulose. The complete cellulolytic complex used by a single fungal species is typically composed of more than one of the above mechanisms that contribute to the utilization of cellulose as a source of carbon or energy or degrade it to ensure fast substrate colonization. The efficiency and regulation of cellulose degradation differs among wood-rotting, litter-decomposing, mycorrhizal or plant pathogenic fungi and yeasts due to the different roles of cellulose degradation in the physiology and ecology of the individual groups.
Similar articles
- Identification and characterization of genes related to cellulolytic activity in basidiomycetes.
Volpini AF, Thomazine T, Umeo SH, Pereira GA, Linde GA, Valle JS, Colauto NB, Barcellos FG, Souza SG. Volpini AF, et al. Genet Mol Res. 2016 Sep 16;15(3). doi: 10.4238/gmr.15038722. Genet Mol Res. 2016. PMID: 27706741 - Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans.
Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW. Watson BJ, et al. J Bacteriol. 2009 Sep;191(18):5697-705. doi: 10.1128/JB.00481-09. Epub 2009 Jul 17. J Bacteriol. 2009. PMID: 19617364 Free PMC article. - Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum.
Cohen R, Suzuki MR, Hammel KE. Cohen R, et al. Appl Environ Microbiol. 2005 May;71(5):2412-7. doi: 10.1128/AEM.71.5.2412-2417.2005. Appl Environ Microbiol. 2005. PMID: 15870328 Free PMC article. - The biological degradation of cellulose.
Béguin P, Aubert JP. Béguin P, et al. FEMS Microbiol Rev. 1994 Jan;13(1):25-58. doi: 10.1111/j.1574-6976.1994.tb00033.x. FEMS Microbiol Rev. 1994. PMID: 8117466 Review. - The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus.
Strakowska J, Błaszczyk L, Chełkowski J. Strakowska J, et al. J Basic Microbiol. 2014 Jul;54 Suppl 1:S2-13. doi: 10.1002/jobm.201300821. Epub 2014 Feb 14. J Basic Microbiol. 2014. PMID: 24532413 Review.
Cited by
- Activation energy of extracellular enzymes in soils from different biomes.
Steinweg JM, Jagadamma S, Frerichs J, Mayes MA. Steinweg JM, et al. PLoS One. 2013;8(3):e59943. doi: 10.1371/journal.pone.0059943. Epub 2013 Mar 25. PLoS One. 2013. PMID: 23536898 Free PMC article. - Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1.
Ma J, Zhang K, Huang M, Hector SB, Liu B, Tong C, Liu Q, Zeng J, Gao Y, Xu T, Liu Y, Liu X, Zhu Y. Ma J, et al. Biotechnol Biofuels. 2016 Oct 6;9:211. doi: 10.1186/s13068-016-0623-x. eCollection 2016. Biotechnol Biofuels. 2016. PMID: 27761153 Free PMC article. - Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil.
Kellner H, Zak DR, Vandenbol M. Kellner H, et al. PLoS One. 2010 Jun 4;5(6):e10971. doi: 10.1371/journal.pone.0010971. PLoS One. 2010. PMID: 20532045 Free PMC article. - Decomposition of spruce wood and release of volatile organic compounds depend on decay type, fungal interactions and enzyme production patterns.
Mali T, Mäki M, Hellén H, Heinonsalo J, Bäck J, Lundell T. Mali T, et al. FEMS Microbiol Ecol. 2019 Sep 1;95(9):fiz135. doi: 10.1093/femsec/fiz135. FEMS Microbiol Ecol. 2019. PMID: 31494677 Free PMC article. - Active and total microbial communities in forest soil are largely different and highly stratified during decomposition.
Baldrian P, Kolařík M, Stursová M, Kopecký J, Valášková V, Větrovský T, Zifčáková L, Snajdr J, Rídl J, Vlček C, Voříšková J. Baldrian P, et al. ISME J. 2012 Feb;6(2):248-58. doi: 10.1038/ismej.2011.95. Epub 2011 Jul 21. ISME J. 2012. PMID: 21776033 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources