Apical transporters for neutral amino acids: physiology and pathophysiology - PubMed (original) (raw)
Review
Apical transporters for neutral amino acids: physiology and pathophysiology
Stefan Bröer. Physiology (Bethesda). 2008 Apr.
Free article
Abstract
Absorption of amino acids in kidney and intestine involves a variety of transporters for different groups of amino acids. This is illustrated by inherited disorders of amino acid absorption, such as Hartnup disorder, cystinuria, iminoglycinuria, dicarboxylic aminoaciduria, and lysinuric protein intolerance, affecting separate groups of amino acids. Recent advances in the molecular identification of apical neutral amino acid transporters has shed a light on the molecular basis of Hartnup disorder and iminoglycinuria.
Similar articles
- Amino acid transport across mammalian intestinal and renal epithelia.
Bröer S. Bröer S. Physiol Rev. 2008 Jan;88(1):249-86. doi: 10.1152/physrev.00018.2006. Physiol Rev. 2008. PMID: 18195088 Review. - Hartnup disorder: unraveling the mystery.
Kraut JA, Sachs G. Kraut JA, et al. Trends Pharmacol Sci. 2005 Feb;26(2):53-5. doi: 10.1016/j.tips.2004.12.003. Trends Pharmacol Sci. 2005. PMID: 15681018 - The role of the neutral amino acid transporter B0AT1 (SLC6A19) in Hartnup disorder and protein nutrition.
Bröer S. Bröer S. IUBMB Life. 2009 Jun;61(6):591-9. doi: 10.1002/iub.210. IUBMB Life. 2009. PMID: 19472175 Free PMC article. Review. - [Inherited amino acid transport disorders].
Igarashi Y, Tada K. Igarashi Y, et al. Nihon Rinsho. 1992 Jul;50(7):1587-92. Nihon Rinsho. 1992. PMID: 1404888 Japanese. - [Hartnup disorder: Pathogenesis, pathophysiology, and therapy].
Ohura T. Ohura T. Nihon Rinsho. 2006 Feb;64 Suppl 2:541-4. Nihon Rinsho. 2006. PMID: 16523951 Review. Japanese. No abstract available.
Cited by
- Pathophysiology and treatment of cystinuria.
Chillarón J, Font-Llitjós M, Fort J, Zorzano A, Goldfarb DS, Nunes V, Palacín M. Chillarón J, et al. Nat Rev Nephrol. 2010 Jul;6(7):424-34. doi: 10.1038/nrneph.2010.69. Epub 2010 Jun 1. Nat Rev Nephrol. 2010. PMID: 20517292 Review. - A multi-hierarchical approach reveals d-serine as a hidden substrate of sodium-coupled monocarboxylate transporters.
Wiriyasermkul P, Moriyama S, Suzuki M, Kongpracha P, Nakamae N, Takeshita S, Tanaka Y, Matsuda A, Miyasaka M, Hamase K, Kimura T, Mita M, Sasabe J, Nagamori S. Wiriyasermkul P, et al. Elife. 2024 Apr 23;12:RP92615. doi: 10.7554/eLife.92615. Elife. 2024. PMID: 38650461 Free PMC article. - A Review on the Role of Food-Derived Bioactive Molecules and the Microbiota-Gut-Brain Axis in Satiety Regulation.
Pizarroso NA, Fuciños P, Gonçalves C, Pastrana L, Amado IR. Pizarroso NA, et al. Nutrients. 2021 Feb 16;13(2):632. doi: 10.3390/nu13020632. Nutrients. 2021. PMID: 33669189 Free PMC article. Review. - The solute carrier 6 family of transporters.
Bröer S, Gether U. Bröer S, et al. Br J Pharmacol. 2012 Sep;167(2):256-78. doi: 10.1111/j.1476-5381.2012.01975.x. Br J Pharmacol. 2012. PMID: 22519513 Free PMC article. Review. - Basolateral sorting signals regulating tissue-specific polarity of heteromeric monocarboxylate transporters in epithelia.
Castorino JJ, Deborde S, Deora A, Schreiner R, Gallagher-Colombo SM, Rodriguez-Boulan E, Philp NJ. Castorino JJ, et al. Traffic. 2011 Apr;12(4):483-98. doi: 10.1111/j.1600-0854.2010.01155.x. Epub 2011 Feb 1. Traffic. 2011. PMID: 21199217 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases