The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer - PubMed (original) (raw)
Comparative Study
. 2008 Sep;15(17):1193-9.
doi: 10.1038/gt.2008.60. Epub 2008 Apr 10.
Affiliations
- PMID: 18401434
- DOI: 10.1038/gt.2008.60
Comparative Study
The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer
E Wisse et al. Gene Ther. 2008 Sep.
Abstract
Fenestrae allow the passage of gene transfer vectors from the sinusoidal lumen to the surface of hepatocytes. We have previously shown that the diameter of fenestrae correlates with species and strain differences of transgene expression following intravenous adenoviral transfer. In the current study, we demonstrate that the diameter of fenestrae in humans without liver pathology is 107+/-1.5 nm. This is similar to the previously reported diameter in New Zealand White (NZW) rabbits (103+/-1.3 nm) and is significantly smaller than in C57BL/6 mice (141+/-5.4 nm) and Sprague-Dawley rats (161+/-2.7 nm). We show that the diameter of fenestrae in one male NZW rabbit and its offspring characterized by a more than 50-fold increase of transgene expression after adenoviral gene transfer is significantly (113+/-1.5 nm; P<0.001) larger than in control NZW rabbits. In vitro filtration experiments using polycarbonate filters with increasing pore sizes demonstrate that a relatively small increment of the diameter of pores potently enhances passage of adenoviral vectors, consistent with in vivo data. In conclusion, the small diameter of fenestrae in humans is likely to be a major obstacle for hepatocyte transduction by adenoviral vectors.
Similar articles
- Species differences in transgene DNA uptake in hepatocytes after adenoviral transfer correlate with the size of endothelial fenestrae.
Snoeys J, Lievens J, Wisse E, Jacobs F, Duimel H, Collen D, Frederik P, De Geest B. Snoeys J, et al. Gene Ther. 2007 Apr;14(7):604-12. doi: 10.1038/sj.gt.3302899. Epub 2007 Jan 18. Gene Ther. 2007. PMID: 17235290 - The size of sinusoidal fenestrae is a critical determinant of hepatocyte transduction after adenoviral gene transfer.
Lievens J, Snoeys J, Vekemans K, Van Linthout S, de Zanger R, Collen D, Wisse E, De Geest B. Lievens J, et al. Gene Ther. 2004 Oct;11(20):1523-31. doi: 10.1038/sj.gt.3302326. Gene Ther. 2004. PMID: 15269718 - Lipid emulsions potently increase transgene expression in hepatocytes after adenoviral transfer.
Snoeys J, Mertens G, Lievens J, van Berkel T, Collen D, Biessen EA, De Geest B. Snoeys J, et al. Mol Ther. 2006 Jan;13(1):98-107. doi: 10.1016/j.ymthe.2005.06.477. Epub 2005 Aug 19. Mol Ther. 2006. PMID: 16112619 - Adenoviral vectors for liver-directed gene therapy.
Connelly S. Connelly S. Curr Opin Mol Ther. 1999 Oct;1(5):565-72. Curr Opin Mol Ther. 1999. PMID: 11249663 Review. - Species differences in hepatocyte-directed gene transfer: implications for clinical translation.
Jacobs F, Feng Y, Van Craeyveld E, Lievens J, Snoeys J, De Geest B. Jacobs F, et al. Curr Gene Ther. 2009 Apr;9(2):83-90. doi: 10.2174/156652309787909562. Curr Gene Ther. 2009. PMID: 19355866 Review.
Cited by
- Immunobiology and pathogenesis of hepatitis B virus infection.
Iannacone M, Guidotti LG. Iannacone M, et al. Nat Rev Immunol. 2022 Jan;22(1):19-32. doi: 10.1038/s41577-021-00549-4. Epub 2021 May 17. Nat Rev Immunol. 2022. PMID: 34002067 Review. - Liver-specific drug delivery platforms: Applications for the treatment of alcohol-associated liver disease.
Warner JB, Guenthner SC, Hardesty JE, McClain CJ, Warner DR, Kirpich IA. Warner JB, et al. World J Gastroenterol. 2022 Sep 28;28(36):5280-5299. doi: 10.3748/wjg.v28.i36.5280. World J Gastroenterol. 2022. PMID: 36185629 Free PMC article. Review. - X-ray computed tomography imaging of a tumor with high sensitivity using gold nanoparticles conjugated to a cancer-specific antibody via polyethylene glycol chains on their surface.
Nakagawa T, Gonda K, Kamei T, Cong L, Hamada Y, Kitamura N, Tada H, Ishida T, Aimiya T, Furusawa N, Nakano Y, Ohuchi N. Nakagawa T, et al. Sci Technol Adv Mater. 2016 Jul 26;17(1):387-397. doi: 10.1080/14686996.2016.1194167. eCollection 2016. Sci Technol Adv Mater. 2016. PMID: 27877890 Free PMC article. - Biodistribution and clearance of magnetoelectric nanoparticles for nanomedical applications using energy dispersive spectroscopy.
Hadjikhani A, Rodzinski A, Wang P, Nagesetti A, Guduru R, Liang P, Runowicz C, Shahbazmohamadi S, Khizroev S. Hadjikhani A, et al. Nanomedicine (Lond). 2017 Aug;12(15):1801-1822. doi: 10.2217/nnm-2017-0080. Epub 2017 Jul 14. Nanomedicine (Lond). 2017. PMID: 28705034 Free PMC article. - Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach.
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Haghighi E, et al. J Nanobiotechnology. 2024 Nov 14;22(1):710. doi: 10.1186/s12951-024-02972-w. J Nanobiotechnology. 2024. PMID: 39543630 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical