The forces that shape embryos: physical aspects of convergent extension by cell intercalation - PubMed (original) (raw)
The forces that shape embryos: physical aspects of convergent extension by cell intercalation
Ray Keller et al. Phys Biol. 2008.
Abstract
We discuss the physical aspects of the morphogenic process of convergence (narrowing) and extension (lengthening) of tissues by cell intercalation. These movements, often referred to as 'convergent extension', occur in both epithelial and mesenchymal tissues during embryogenesis and organogenesis of invertebrates and vertebrates, and they play large roles in shaping the body plan during development. Our focus is on the presumptive mesodermal and neural tissues of the Xenopus (frog) embryo, tissues for which some physical measurements have been made. We discuss the physical aspects of how polarized cell motility, oriented along future tissue axes, generate the forces that drive oriented cell intercalation and how this intercalation results in convergence and extension or convergence and thickening of the tissue. Our goal is to identify aspects of these morphogenic movements for further biophysical, molecular and cell biological, and modeling studies.
Similar articles
- Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos.
Elul T, Koehl MA, Keller R. Elul T, et al. Dev Biol. 1997 Nov 15;191(2):243-58. doi: 10.1006/dbio.1997.8711. Dev Biol. 1997. PMID: 9398438 - Shaping the vertebrate body plan by polarized embryonic cell movements.
Keller R. Keller R. Science. 2002 Dec 6;298(5600):1950-4. doi: 10.1126/science.1079478. Science. 2002. PMID: 12471247 Review. - The presumptive floor plate (notoplate) induces behaviors associated with convergent extension in medial but not lateral neural plate cells of Xenopus.
Ezin AM, Skoglund P, Keller R. Ezin AM, et al. Dev Biol. 2006 Dec 15;300(2):670-86. doi: 10.1016/j.ydbio.2006.09.004. Epub 2006 Sep 12. Dev Biol. 2006. PMID: 17034782 - Biology and physics of cell shape changes in development.
Paluch E, Heisenberg CP. Paluch E, et al. Curr Biol. 2009 Sep 15;19(17):R790-9. doi: 10.1016/j.cub.2009.07.029. Curr Biol. 2009. PMID: 19906581 Review. - The cellular basis of the convergence and extension of the Xenopus neural plate.
Keller R, Shih J, Sater A. Keller R, et al. Dev Dyn. 1992 Mar;193(3):199-217. doi: 10.1002/aja.1001930302. Dev Dyn. 1992. PMID: 1600240
Cited by
- Generation of shape complexity through tissue conflict resolution.
Rebocho AB, Southam P, Kennaway JR, Bangham JA, Coen E. Rebocho AB, et al. Elife. 2017 Feb 7;6:e20156. doi: 10.7554/eLife.20156. Elife. 2017. PMID: 28166865 Free PMC article. - E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch.
Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL, Nelson WJ, Dunn AR. Borghi N, et al. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12568-73. doi: 10.1073/pnas.1204390109. Epub 2012 Jul 16. Proc Natl Acad Sci U S A. 2012. PMID: 22802638 Free PMC article. - The revolutionary developmental biology of Wilhelm His, Sr.
Richardson MK, Keuck G. Richardson MK, et al. Biol Rev Camb Philos Soc. 2022 Jun;97(3):1131-1160. doi: 10.1111/brv.12834. Epub 2022 Feb 1. Biol Rev Camb Philos Soc. 2022. PMID: 35106889 Free PMC article. Review. - Models of convergent extension during morphogenesis.
Shindo A. Shindo A. Wiley Interdiscip Rev Dev Biol. 2018 Jan;7(1):e293. doi: 10.1002/wdev.293. Epub 2017 Sep 14. Wiley Interdiscip Rev Dev Biol. 2018. PMID: 28906063 Free PMC article. Review. - Computational models for mechanics of morphogenesis.
Wyczalkowski MA, Chen Z, Filas BA, Varner VD, Taber LA. Wyczalkowski MA, et al. Birth Defects Res C Embryo Today. 2012 Jun;96(2):132-52. doi: 10.1002/bdrc.21013. Birth Defects Res C Embryo Today. 2012. PMID: 22692887 Free PMC article. Review.
MeSH terms
LinkOut - more resources
Full Text Sources