Extracting dynamics from static cancer expression data - PubMed (original) (raw)
Extracting dynamics from static cancer expression data
Anupam Gupta et al. IEEE/ACM Trans Comput Biol Bioinform. 2008 Apr-Jun.
Abstract
Static expression experiments analyze samples from many individuals. These samples are often snapshots of the progression of a certain disease such as cancer. This raises an intriguing question: Can we determine a temporal order for these samples? Such an ordering can lead to better understanding of the dynamics of the disease and to the identification of genes associated with its progression. In this paper we formally prove, for the first time, that under a model for the dynamics of the expression levels of a single gene, it is indeed possible to recover the correct ordering of the static expression datasets by solving an instance of the traveling salesman problem (TSP). In addition, we devise an algorithm that combines a TSP heuristic and probabilistic modeling for inferring the underlying temporal order of the microarray experiments. This algorithm constructs probabilistic continuous curves to represent expression profiles leading to accurate temporal reconstruction for human data. Applying our method to cancer expression data we show that the ordering derived agrees well with survival duration. A classifier that utilizes this ordering improves upon other classifiers suggested for this task. The set of genes displaying consistent behavior for the determined ordering are enriched for genes associated with cancer progression.
Similar articles
- Time ordering of gene coexpression.
Leng X, Müller HG. Leng X, et al. Biostatistics. 2006 Oct;7(4):569-84. doi: 10.1093/biostatistics/kxj026. Epub 2006 Feb 22. Biostatistics. 2006. PMID: 16495429 - Analysis techniques for microarray time-series data.
Filkov V, Skiena S, Zhi J. Filkov V, et al. J Comput Biol. 2002;9(2):317-30. doi: 10.1089/10665270252935485. J Comput Biol. 2002. PMID: 12015884 - Autoregressive-model-based missing value estimation for DNA microarray time series data.
Choong MK, Charbit M, Yan H. Choong MK, et al. IEEE Trans Inf Technol Biomed. 2009 Jan;13(1):131-7. doi: 10.1109/TITB.2008.2007421. IEEE Trans Inf Technol Biomed. 2009. PMID: 19129032 - Statistical methods for microarray assays.
Krajewski P, Bocianowski J. Krajewski P, et al. J Appl Genet. 2002;43(3):269-78. J Appl Genet. 2002. PMID: 12177516 Review. - Relative expression analysis for molecular cancer diagnosis and prognosis.
Eddy JA, Sung J, Geman D, Price ND. Eddy JA, et al. Technol Cancer Res Treat. 2010 Apr;9(2):149-59. doi: 10.1177/153303461000900204. Technol Cancer Res Treat. 2010. PMID: 20218737 Free PMC article. Review.
Cited by
- Identification of stromal cell proportion-related genes in the breast cancer tumor microenvironment using CorDelSFS feature selection: implications for tumor progression and prognosis.
Guo S, Ma Y, Li X, Li W, He X, Yuan Z, Hu Y. Guo S, et al. Front Genet. 2023 Jul 27;14:1165648. doi: 10.3389/fgene.2023.1165648. eCollection 2023. Front Genet. 2023. PMID: 37576555 Free PMC article. - Temporal ordering of cancer microarray data through a reinforcement learning based approach.
Czibula G, Bocicor IM, Czibula IG. Czibula G, et al. PLoS One. 2013;8(4):e60883. doi: 10.1371/journal.pone.0060883. Epub 2013 Apr 2. PLoS One. 2013. PMID: 23565283 Free PMC article. - Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data.
Campbell KR, Yau C. Campbell KR, et al. Nat Commun. 2018 Jun 22;9(1):2442. doi: 10.1038/s41467-018-04696-6. Nat Commun. 2018. PMID: 29934517 Free PMC article. - Blood and brain gene expression trajectories mirror neuropathology and clinical deterioration in neurodegeneration.
Iturria-Medina Y, Khan AF, Adewale Q, Shirazi AH; Alzheimer's Disease Neuroimaging Initiative. Iturria-Medina Y, et al. Brain. 2020 Feb 1;143(2):661-673. doi: 10.1093/brain/awz400. Brain. 2020. PMID: 31989163 Free PMC article. - A machine learning-based score for precise echocardiographic assessment of cardiac remodelling in hypertensive young adults.
Alsharqi M, Lapidaire W, Iturria-Medina Y, Xiong Z, Williamson W, Mohamed A, Tan CMJ, Kitt J, Burchert H, Fletcher A, Whitworth P, Lewandowski AJ, Leeson P. Alsharqi M, et al. Eur Heart J Imaging Methods Pract. 2023 Sep 27;1(2):qyad029. doi: 10.1093/ehjimp/qyad029. eCollection 2023 Sep. Eur Heart J Imaging Methods Pract. 2023. PMID: 37818310 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous