Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element - PubMed (original) (raw)
Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element
T Belazzi et al. EMBO J. 1991 Mar.
Abstract
Transcription of the CTT1 (catalase T) gene of Saccharomyces cerevisiae is controlled by oxygen via heme, by nutrients via cAMP and by heat shock. Nitrogen limitation triggers a rapid, cycloheximide-insensitive derepression of the gene. Residual derepression in a cAMP-nonresponsive mutant with attenuated protein kinase activity (bcy1 tpk1w tpk2 tpk3) demonstrates the existence of an alternative, cAMP-independent nutrient signaling mechanism. Deletion analysis using CTT1-lacZ fusion genes revealed the contribution of multiple control elements to derepression, not all of which respond to the cAMP signal. A positive promoter element responding to negative control by cAMP was inactivated by deletion of a DNA region between base pairs -340 and -364. Upstream fragments including this element confer negative cAMP control to a LEU2-lacZ fusion gene. Northern analysis of CTT1 expression in the presence or absence of heme, in RAS2+ (high cAMP) and ras2 mutant (low cAMP) strains and in cells grown at low temperature (23 degrees C) and in heat-shocked cells (37 degrees C) shows that CTT1 is only induced to an appreciable extent when at least two of the three factors contributing to its expression (oxidative stress signaled by heme, nutrient starvation (low cAMP) and heat stress) activate the CTT1 promoter.
Similar articles
- Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae.
Wieser R, Adam G, Wagner A, Schüller C, Marchler G, Ruis H, Krawiec Z, Bilinski T. Wieser R, et al. J Biol Chem. 1991 Jul 5;266(19):12406-11. J Biol Chem. 1991. PMID: 2061315 - A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions.
Marchler G, Schüller C, Adam G, Ruis H. Marchler G, et al. EMBO J. 1993 May;12(5):1997-2003. doi: 10.1002/j.1460-2075.1993.tb05849.x. EMBO J. 1993. PMID: 8387917 Free PMC article. - Control of Saccharomyces cerevisiae catalase T gene (CTT1) expression by nutrient supply via the RAS-cyclic AMP pathway.
Bissinger PH, Wieser R, Hamilton B, Ruis H. Bissinger PH, et al. Mol Cell Biol. 1989 Mar;9(3):1309-15. doi: 10.1128/mcb.9.3.1309-1315.1989. Mol Cell Biol. 1989. PMID: 2542766 Free PMC article. - Heme control region of the catalase T gene of the yeast Saccharomyces cerevisiae.
Spevak W, Hartig A, Meindl P, Ruis H. Spevak W, et al. Mol Gen Genet. 1986 Apr;203(1):73-8. doi: 10.1007/BF00330386. Mol Gen Genet. 1986. PMID: 2423850 - UBI4, the polyubiquitin gene of Saccharomyces cerevisiae, is a heat shock gene that is also subject to catabolite derepression control.
Watt R, Piper PW. Watt R, et al. Mol Gen Genet. 1997 Jan 27;253(4):439-47. doi: 10.1007/s004380050341. Mol Gen Genet. 1997. PMID: 9037103
Cited by
- Synthesis of Extracellular L-lysine-α-oxidase along with Degrading Enzymes by Trichoderma cf. aureoviride Rifai VKM F-4268D: Role in Biocontrol and Systemic Plant Resistance.
Arinbasarova AY, Botin AS, Medentsev AG, Makrushin KV, Vetcher AA, Stanishevskiy YM. Arinbasarova AY, et al. J Fungi (Basel). 2024 Apr 28;10(5):323. doi: 10.3390/jof10050323. J Fungi (Basel). 2024. PMID: 38786678 Free PMC article. - The intricate role of Sir2 in oxidative stress response during the post-diauxic phase in Saccharomyces cerevisiae.
Kim YH, Ryu JI, Devare MN, Jung J, Kim JY. Kim YH, et al. Front Microbiol. 2023 Nov 9;14:1285559. doi: 10.3389/fmicb.2023.1285559. eCollection 2023. Front Microbiol. 2023. PMID: 38029141 Free PMC article. - A phosphatase-centric mechanism drives stress signaling response.
Hollenstein DM, Gérecová G, Romanov N, Ferrari J, Veis J, Janschitz M, Beyer R, Schüller C, Ogris E, Hartl M, Ammerer G, Reiter W. Hollenstein DM, et al. EMBO Rep. 2021 Nov 4;22(11):e52476. doi: 10.15252/embr.202152476. Epub 2021 Sep 24. EMBO Rep. 2021. PMID: 34558777 Free PMC article. - Melatonin Reduces Oxidative Stress Damage Induced by Hydrogen Peroxide in Saccharomyces cerevisiae.
Vázquez J, González B, Sempere V, Mas A, Torija MJ, Beltran G. Vázquez J, et al. Front Microbiol. 2017 Jun 15;8:1066. doi: 10.3389/fmicb.2017.01066. eCollection 2017. Front Microbiol. 2017. PMID: 28663741 Free PMC article. - Effect of myricetin, pyrogallol, and phloroglucinol on yeast resistance to oxidative stress.
Mendes V, Vilaça R, de Freitas V, Ferreira PM, Mateus N, Costa V. Mendes V, et al. Oxid Med Cell Longev. 2015;2015:782504. doi: 10.1155/2015/782504. Epub 2015 Apr 27. Oxid Med Cell Longev. 2015. PMID: 26000072 Free PMC article.
References
- J Biol Chem. 1952 Mar;195(1):133-40 - PubMed
- Nature. 1984 Jun 7-13;309(5968):523-7 - PubMed
- Mol Gen Genet. 1990 Aug;223(1):97-106 - PubMed
- J Bacteriol. 1986 May;166(2):364-7 - PubMed
- Yeast. 1985 Sep;1(1):15-24 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials