Anticancer activity of isoobtusilactone A from Cinnamomum kotoense: involvement of apoptosis, cell-cycle dysregulation, mitochondria regulation, and reactive oxygen species - PubMed (original) (raw)

doi: 10.1021/np070620e. Epub 2008 May 20.

Affiliations

Anticancer activity of isoobtusilactone A from Cinnamomum kotoense: involvement of apoptosis, cell-cycle dysregulation, mitochondria regulation, and reactive oxygen species

Chung-Yi Chen et al. J Nat Prod. 2008 Jun.

Abstract

In this study, we investigate the anticancer effect of isoobtusilactone A (IOA), a constituent isolated from the leaves of Cinnamomum kotoense, on human non-small cell lung cancer (NSCLC) A549 cells. IOA was found to induce the arrest of G2-M phase, induce apoptosis, increase sub-G1, and inhibit the growth of these cells. Further investigation revealed that IOA's blockade of the cell cycle was associated with increased levels of p21/WAF1, p27 (kip1), and p53. In addition, IOA triggered the mitochondrial apoptotic pathway, as indicated by an increase in Bax/Bcl-2 ratios, resulting in a loss of mitochondrial membrane potential, release of cytochrome c, activation of caspase-9 and caspase-3, and cleavage of PARP. We also found the generation of reactive oxygen species (ROS) to be a critical mediator in IOA-induced inhibition of A549 cell growth. In antioxidant and NO inhibitor studies, we found that by pretreating A549 cells with either N-acetylcystenine (NAC), catalase, mannitol, dexamethasone, trolox, or L-NAME we could significantly decrease IOA production of ROS. Moreover, using NAC to block ROS, we could significantly suppress IOA-induced antiproliferation, antimigration, and anti-invasion. Finally, we found that IOA inhibited the migration and invasion of A549 cell migration and invasion. Taken together, these results suggest that IOA has anticancer effects on A549 cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources