Superlenses to overcome the diffraction limit - PubMed (original) (raw)
Superlenses to overcome the diffraction limit
Xiang Zhang et al. Nat Mater. 2008 Jun.
Abstract
The imaging resolution of conventional lenses is limited by diffraction. Artificially engineered metamaterials now offer the possibility of building a superlens that overcomes this limit. We review the physics of such superlenses and the theoretical and experimental progress in this rapidly developing field. Superlenses have great potential in applications such as biomedical imaging, optical lithography and data storage.
Comment in
- What diffraction limit?
Zheludev NI. Zheludev NI. Nat Mater. 2008 Jun;7(6):420-2. doi: 10.1038/nmat2163. Nat Mater. 2008. PMID: 18497841
Similar articles
- Magnifying superlenses and other applications of plasmonic metamaterials in microscopy and sensing.
Smolyaninov II, Davis CC. Smolyaninov II, et al. Chemphyschem. 2009 Mar 9;10(4):625-8. doi: 10.1002/cphc.200800757. Chemphyschem. 2009. PMID: 19219891 - Metamaterials and imaging.
Kim M, Rho J. Kim M, et al. Nano Converg. 2015;2(1):22. doi: 10.1186/s40580-015-0053-7. Epub 2015 Nov 9. Nano Converg. 2015. PMID: 28191408 Free PMC article. Review. - Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications.
Haxha S, AbdelMalek F, Ouerghi F, Charlton MDB, Aggoun A, Fang X. Haxha S, et al. Sci Rep. 2018 Oct 31;8(1):16119. doi: 10.1038/s41598-018-33572-y. Sci Rep. 2018. PMID: 30382113 Free PMC article. - High aspect subdiffraction-limit photolithography via a silver superlens.
Liu H, Wang B, Ke L, Deng J, Chum CC, Teo SL, Shen L, Maier SA, Teng J. Liu H, et al. Nano Lett. 2012 Mar 14;12(3):1549-54. doi: 10.1021/nl2044088. Epub 2012 Mar 6. Nano Lett. 2012. PMID: 22375712 - Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.
Woo EJ, Seo JK. Woo EJ, et al. Physiol Meas. 2008 Oct;29(10):R1-26. doi: 10.1088/0967-3334/29/10/R01. Epub 2008 Sep 17. Physiol Meas. 2008. PMID: 18799834 Review.
Cited by
- Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies.
Fan W, Yan B, Wang Z, Wu L. Fan W, et al. Sci Adv. 2016 Aug 12;2(8):e1600901. doi: 10.1126/sciadv.1600901. eCollection 2016 Aug. Sci Adv. 2016. PMID: 27536727 Free PMC article. - Super-Resolution Real Imaging in Microsphere-Assisted Microscopy.
Lai HS, Wang F, Li Y, Jia B, Liu L, Li WJ. Lai HS, et al. PLoS One. 2016 Oct 21;11(10):e0165194. doi: 10.1371/journal.pone.0165194. eCollection 2016. PLoS One. 2016. PMID: 27768774 Free PMC article. - Perturbative countersurveillance metaoptics with compound nanosieves.
Xue J, Zhou ZK, Lin L, Guo C, Sun S, Lei D, Qiu CW, Wang XH. Xue J, et al. Light Sci Appl. 2019 Nov 15;8:101. doi: 10.1038/s41377-019-0212-4. eCollection 2019. Light Sci Appl. 2019. PMID: 31754428 Free PMC article. - A Wearable Metasurface for High Efficiency, Free-Positioning Omnidirectional Wireless Power Transfer.
Wang H, Chen YS, Zhao Y. Wang H, et al. New J Phys. 2021 Dec;23(12):125003. doi: 10.1088/1367-2630/ac304a. Epub 2021 Dec 13. New J Phys. 2021. PMID: 34992495 Free PMC article. - Design of an acoustic superlens using single-phase metamaterials with a star-shaped lattice structure.
Chen M, Jiang H, Zhang H, Li D, Wang Y. Chen M, et al. Sci Rep. 2018 Jan 30;8(1):1861. doi: 10.1038/s41598-018-19374-2. Sci Rep. 2018. PMID: 29382848 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources