Experimental diabetes enhances Ca2+ mobilization and glutamate exocytosis in cerebral synaptosomes from mice - PubMed (original) (raw)
Experimental diabetes enhances Ca2+ mobilization and glutamate exocytosis in cerebral synaptosomes from mice
Eiki Satoh et al. Diabetes Res Clin Pract. 2008 Aug.
Abstract
The present study was conducted to investigate the effects of the diabetic condition on the Ca(2+) mobilization and glutamate release in cerebral nerve terminals (synaptosomes). Diabetes was induced in male mice by intraperitoneal injection of streptozotocin. Cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and glutamate release in synaptosomes were determined using fura-2 and enzyme-linked fluorometric assay, respectively. Diabetes significantly enhanced the ability of the depolarizing agents K(+) and 4-aminopyridine (4-AP) to increase [Ca(2+)](i). In addition, diabetes significantly enhanced K(+)- and 4-AP-evoked Ca(2+)-dependent glutamate release. The pretreatment of synaptosomes with a combination of omega-agatoxin IVA (a P-type Ca(2+) channel blocker) and omega-conotoxin GVIA (an N-type Ca(2+) channel blocker) inhibited K(+)- or 4-AP-induced increases in [Ca(2+)](i) and Ca(2+)-dependent glutamate release in synaptosomes from the control and diabetic mice to a similar extent, respectively. These results indicate that diabetes enhances a K(+)- or 4-AP-evoked Ca(2+)-dependent glutamate release by increasing [Ca(2+)](i) via stimulation of Ca(2+) entry through both P- and N-type Ca(2+) channels.
Similar articles
- Chronic stress enhances calcium mobilization and glutamate exocytosis in cerebrocortical synaptosomes from mice.
Satoh E, Tada Y, Matsuhisa F. Satoh E, et al. Neurol Res. 2011 Nov;33(9):899-907. doi: 10.1179/1743132811Y.0000000033. Neurol Res. 2011. PMID: 22080989 - Partial compensation for N-type Ca(2+) channel loss by P/Q-type Ca(2+) channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals.
Ladera C, Martín R, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. Ladera C, et al. Eur J Neurosci. 2009 Mar;29(6):1131-40. doi: 10.1111/j.1460-9568.2009.06675.x. Eur J Neurosci. 2009. PMID: 19302149 - Role of elevated cytosolic calcium in the pathogenesis of complications in diabetes mellitus.
Massry SG, Smogorzewski M. Massry SG, et al. Miner Electrolyte Metab. 1997;23(3-6):253-60. Miner Electrolyte Metab. 1997. PMID: 9387128 Review. - Glutamate exocytosis from isolated nerve terminals.
Nicholls DG, Coffey ET. Nicholls DG, et al. Adv Second Messenger Phosphoprotein Res. 1994;29:189-203. doi: 10.1016/s1040-7952(06)80016-9. Adv Second Messenger Phosphoprotein Res. 1994. PMID: 7848711 Review. No abstract available.
Cited by
- An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes.
Huang XT, Li C, Peng XP, Guo J, Yue SJ, Liu W, Zhao FY, Han JZ, Huang YH, Yang-Li, Cheng QM, Zhou ZG, Chen C, Feng DD, Luo ZQ. Huang XT, et al. Sci Rep. 2017 Mar 17;7:44120. doi: 10.1038/srep44120. Sci Rep. 2017. PMID: 28303894 Free PMC article. - Magnetic resonance assessment of the cerebral alterations associated with obesity development.
Lizarbe B, Campillo B, Guadilla I, López-Larrubia P, Cerdán S. Lizarbe B, et al. J Cereb Blood Flow Metab. 2020 Nov;40(11):2135-2151. doi: 10.1177/0271678X20941263. Epub 2020 Jul 23. J Cereb Blood Flow Metab. 2020. PMID: 32703110 Free PMC article. Review. - Diabetes and Alzheimer disease, two overlapping pathologies with the same background: oxidative stress.
Rosales-Corral S, Tan DX, Manchester L, Reiter RJ. Rosales-Corral S, et al. Oxid Med Cell Longev. 2015;2015:985845. doi: 10.1155/2015/985845. Epub 2015 Feb 26. Oxid Med Cell Longev. 2015. PMID: 25815110 Free PMC article. Review. - Reductions in Calcium Signaling Limit Inhibition to Diabetic Retinal Rod Bipolar Cells.
Moore-Dotson JM, Eggers ED. Moore-Dotson JM, et al. Invest Ophthalmol Vis Sci. 2019 Sep 3;60(12):4063-4073. doi: 10.1167/iovs.19-27137. Invest Ophthalmol Vis Sci. 2019. PMID: 31560762 Free PMC article. - The role of neurovascular coupling dysfunction in cognitive decline of diabetes patients.
Feng L, Gao L. Feng L, et al. Front Neurosci. 2024 Mar 21;18:1375908. doi: 10.3389/fnins.2024.1375908. eCollection 2024. Front Neurosci. 2024. PMID: 38576869 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous