MicroRNAs: novel regulators in cardiac development and disease - PubMed (original) (raw)
Review
. 2008 Sep 1;79(4):562-70.
doi: 10.1093/cvr/cvn137. Epub 2008 May 29.
Affiliations
- PMID: 18511432
- DOI: 10.1093/cvr/cvn137
Review
MicroRNAs: novel regulators in cardiac development and disease
Thomas Thum et al. Cardiovasc Res. 2008.
Abstract
MicroRNAs (miRNAs) are endogenous, small ribonucleotides regulating the translation of target messenger RNAs that have been shown to be involved in orchestrating growth, development, function, and stress responses of various organs, including the heart. Muscle miRNAs are mainly controlled by a network of myogenic transcription factors, and throughout cardiac development they fine-tune regulatory protein levels in a spatiotemporal manner. Recent profiling studies revealed that miRNA expression patterns are derailed in both human cardiac disease and animal models of cardiac hypertrophy and failure. Modulation of miRNA expression in vitro as well as in vivo has revealed an important role of miRNAs in regulating heart function, particularly cardiac growth and conductance. Here, we overview the recent findings on miRNAs in cardiac development and disease and report the latest advances in the identification and validation of miRNA targets, which are important for a comprehensive understanding of cardiac miRNA function. Finally, we focus on the development and use of miRNA antagonists (antagomirs) to target miRNAs in vivo, which may translate into novel therapeutic strategies for heart disease in the future.
Comment in
- MicroRNAs: components of an integrated system controlling cardiac development, physiology, and disease pathogenesis.
Condorelli G, Dimmeler S. Condorelli G, et al. Cardiovasc Res. 2008 Sep 1;79(4):551-2. doi: 10.1093/cvr/cvn189. Epub 2008 Jul 9. Cardiovasc Res. 2008. PMID: 18614548 No abstract available.
Similar articles
- MicroRNAs control gene expression: importance for cardiac development and pathophysiology.
Catalucci D, Latronico MV, Condorelli G. Catalucci D, et al. Ann N Y Acad Sci. 2008 Mar;1123:20-9. doi: 10.1196/annals.1420.004. Ann N Y Acad Sci. 2008. PMID: 18375574 Review. - MicroRNA epigenetic alterations: predicting biomarkers and therapeutic targets in human diseases.
Wang Y, Liang Y, Lu Q. Wang Y, et al. Clin Genet. 2008 Oct;74(4):307-15. doi: 10.1111/j.1399-0004.2008.01075.x. Epub 2008 Aug 18. Clin Genet. 2008. PMID: 18713257 Review. - [Potential role of microRNAs in human diseases and the exploration on design of small molecule agents].
Zhang Y, Lu YJ, Yang BF. Zhang Y, et al. Yao Xue Xue Bao. 2007 Nov;42(11):1115-21. Yao Xue Xue Bao. 2007. PMID: 18300464 Review. Chinese. - MicroRNAs in common diseases and potential therapeutic applications.
Tsai LM, Yu D. Tsai LM, et al. Clin Exp Pharmacol Physiol. 2010 Jan;37(1):102-7. doi: 10.1111/j.1440-1681.2009.05269.x. Epub 2009 Aug 4. Clin Exp Pharmacol Physiol. 2010. PMID: 19671070 Review. - Implication of microRNAs in the cardiovascular system.
Scalbert E, Bril A. Scalbert E, et al. Curr Opin Pharmacol. 2008 Apr;8(2):181-8. doi: 10.1016/j.coph.2007.12.013. Epub 2008 Feb 19. Curr Opin Pharmacol. 2008. PMID: 18243792 Review.
Cited by
- A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures.
Shakyawar SK, Mishra NK, Vellichirammal NN, Cary L, Helikar T, Powers R, Oberley-Deegan RE, Berkowitz DB, Bayles KW, Singh VK, Guda C. Shakyawar SK, et al. Radiat Res. 2023 Jan 1;199(1):89-111. doi: 10.1667/RADE-21-00187.1. Radiat Res. 2023. PMID: 36368026 Free PMC article. Review. - Antisense MicroRNA Therapeutics in Cardiovascular Disease: Quo Vadis?
Philippen LE, Dirkx E, Wit JB, Burggraaf K, de Windt LJ, da Costa Martins PA. Philippen LE, et al. Mol Ther. 2015 Dec;23(12):1810-8. doi: 10.1038/mt.2015.133. Epub 2015 Jul 28. Mol Ther. 2015. PMID: 26216517 Free PMC article. Review. - Silencing miR-370-3p rescues funny current and sinus node function in heart failure.
Yanni J, D'Souza A, Wang Y, Li N, Hansen BJ, Zakharkin SO, Smith M, Hayward C, Whitson BA, Mohler PJ, Janssen PML, Zeef L, Choudhury M, Zi M, Cai X, Logantha SJRJ, Nakao S, Atkinson A, Petkova M, Doris U, Ariyaratnam J, Cartwright EJ, Griffiths-Jones S, Hart G, Fedorov VV, Oceandy D, Dobrzynski H, Boyett MR. Yanni J, et al. Sci Rep. 2020 Jul 9;10(1):11279. doi: 10.1038/s41598-020-67790-0. Sci Rep. 2020. PMID: 32647133 Free PMC article. - miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy.
Wang K, Long B, Zhou J, Li PF. Wang K, et al. J Biol Chem. 2010 Apr 16;285(16):11903-12. doi: 10.1074/jbc.M109.098004. Epub 2010 Feb 21. J Biol Chem. 2010. PMID: 20177053 Free PMC article. - miR-21 regulates vascular smooth muscle cell function in arteriosclerosis obliterans of lower extremities through AKT and ERK1/2 pathways.
Huang S, Xu T, Huang X, Li S, Qin W, Chen W, Zhang Z. Huang S, et al. Arch Med Sci. 2019 Oct;15(6):1490-1497. doi: 10.5114/aoms.2018.78885. Epub 2018 Oct 11. Arch Med Sci. 2019. PMID: 31749878 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical