Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999-2002 - PubMed (original) (raw)

Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999-2002

Elizabeth E Hatch et al. Environ Health. 2008.

Abstract

Background: Although diet and activity are key factors in the obesity epidemic, laboratory studies suggest that endocrine disrupting chemicals may also affect obesity.

Methods: We analyzed associations between six phthalate metabolites measured in urine and body mass index (BMI) and waist circumference (WC) in National Health and Nutrition Examination Survey (NHANES) participants aged 6-80. We included 4369 participants from NHANES 1999-2002, with data on mono-ethyl (MEP), mono-2-ethylhexyl (MEHP), mono-n-butyl (MBP), and mono-benzyl (MBzP) phthalate; 2286 also had data on mono-2-ethyl-5-hydroxyhexyl (MEHHP) and mono-2-ethyl-5-oxohexyl (MEOHP) phthalate (2001-2002). Using multiple regression, we computed mean BMI and WC within phthalate quartiles in eight age/gender specific models.

Results: The most consistent associations were in males aged 20-59; BMI and WC increased across quartiles of MBzP (adjusted mean BMI = 26.7, 27.2, 28.4, 29.0, p-trend = 0.0002), and positive associations were also found for MEOHP, MEHHP, MEP, and MBP. In females, BMI and WC increased with MEP quartile in adolescent girls (adjusted mean BMI = 22.9, 23.8, 24.1, 24.7, p-trend = 0.03), and a similar but less strong pattern was seen in 20-59 year olds. In contrast, MEHP was inversely related to BMI in adolescent girls (adjusted mean BMI = 25.4, 23.8, 23.4, 22.9, p-trend = 0.02) and females aged 20-59 (adjusted mean BMI = 29.9, 29.9, 27.9, 27.6, p-trend = 0.02). There were no important associations among children, but several inverse associations among 60-80 year olds.

Conclusion: This exploratory, cross-sectional analysis revealed a number of interesting associations with different phthalate metabolites and obesity outcomes, including notable differences by gender and age subgroups. Effects of endocrine disruptors, such as phthalates, may depend upon endogenous hormone levels, which vary dramatically by age and gender. Individual phthalates also have different biologic and hormonal effects. Although our study has limitations, both of these factors could explain some of the variation in the observed associations. These preliminary data support the need for prospective studies in populations at risk for obesity.

PubMed Disclaimer

Figures

Figure 1

Figure 1

Difference in Body Mass Index, by Increasing MEP Quartile and Age Group. Top graph displays results for males, bottom graph for females. All estimates are adjusted for age, race/ethnicity, creatinine, height, SES, dietary factors, TV, Mets/month (age 12+), smoking (age 20+), and reproductive factors (age 20+ females). Results of trend tests are included for those with p-values<0.15.

Figure 2

Figure 2

Difference in Body Mass Index, by Increasing MBP Quartile and Age Group. Top graph displays results for males, bottom graph for females. All estimates are adjusted for age, race/ethnicity, creatinine, height, SES, dietary factors, TV, Mets/month (age 12+), smoking (age 20+), and reproductive factors (age 20+ females). Results of trend tests are included for those with p-values<0.15.

Figure 3

Figure 3

Difference in Body Mass Index, by Increasing MBzP Quartile and Age Group. Top graph displays results for males, bottom graph for females. All estimates are adjusted for age, race/ethnicity, creatinine, height, SES, dietary factors, TV, Mets/month (age 12+), smoking (age 20+), and reproductive factors (age 20+ females). Results of trend tests are included for those with p-values<0.15.

Figure 4

Figure 4

Difference in Body Mass Index, by Increasing MEHP Quartile and Age Group. Top graph displays results for males, bottom graph for females. All estimates are adjusted for age, race/ethnicity, creatinine, height, SES, dietary factors, TV, Mets/month (age 12+), smoking (age 20+), and reproductive factors (age 20+ females). Results of trend tests are included for those with p-values<0.15.

Figure 5

Figure 5

Difference in Body Mass Index, by Increasing MEHHP Quartile and Age Group. Top graph displays results for males, bottom graph for females. All estimates are adjusted for age, race/ethnicity, creatinine, height, SES, dietary factors, TV, Mets/month (age 12+), smoking (age 20+), and reproductive factors (age 20+ females). Results of trend tests are included for those with p-values<0.15.

Similar articles

Cited by

References

    1. Ebbeling CB, Pawlak DB, Ludwig DS. Childhood obesity: public-health crisis, common sense cure. Lancet. 2002;360:473–482. doi: 10.1016/S0140-6736(02)09678-2. - DOI - PubMed
    1. Hill JO, Peters JC. Environmental contributions to the obesity epidemic. Science. 1998;280:1371–1374. doi: 10.1126/science.280.5368.1371. - DOI - PubMed
    1. Grun F, Blumberg B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006;147:S50–55. doi: 10.1210/en.2005-1129. - DOI - PubMed
    1. Heindel JJ. Endocrine disruptors and the obesity epidemic. Toxicol Sci. 2003;76:247–249. doi: 10.1093/toxsci/kfg255. - DOI - PubMed
    1. Knudsen N, Laurberg P, Rasmussen LB, Bulow I, Perrild H, Ovesen L, Jorgensen T. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J Clin Endocrinol Metab. 2005;90:4019–4024. doi: 10.1210/jc.2004-2225. - DOI - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources