Understanding individual human mobility patterns - PubMed (original) (raw)
. 2008 Jun 5;453(7196):779-82.
doi: 10.1038/nature06958.
Affiliations
- PMID: 18528393
- DOI: 10.1038/nature06958
Understanding individual human mobility patterns
Marta C González et al. Nature. 2008.
Abstract
Despite their importance for urban planning, traffic forecasting and the spread of biological and mobile viruses, our understanding of the basic laws governing human motion remains limited owing to the lack of tools to monitor the time-resolved location of individuals. Here we study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six-month period. We find that, in contrast with the random trajectories predicted by the prevailing Lévy flight and random walk models, human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time-independent characteristic travel distance and a significant probability to return to a few highly frequented locations. After correcting for differences in travel distances and the inherent anisotropy of each trajectory, the individual travel patterns collapse into a single spatial probability distribution, indicating that, despite the diversity of their travel history, humans follow simple reproducible patterns. This inherent similarity in travel patterns could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning and agent-based modelling.
Similar articles
- Limits of predictability in human mobility.
Song C, Qu Z, Blumm N, Barabási AL. Song C, et al. Science. 2010 Feb 19;327(5968):1018-21. doi: 10.1126/science.1177170. Science. 2010. PMID: 20167789 - The scaling laws of human travel.
Brockmann D, Hufnagel L, Geisel T. Brockmann D, et al. Nature. 2006 Jan 26;439(7075):462-5. doi: 10.1038/nature04292. Nature. 2006. PMID: 16437114 - The virtual cell--a candidate co-ordinator for 'middle-out' modelling of biological systems.
Walker DC, Southgate J. Walker DC, et al. Brief Bioinform. 2009 Jul;10(4):450-61. doi: 10.1093/bib/bbp010. Epub 2009 Mar 17. Brief Bioinform. 2009. PMID: 19293250 Review. - Enhancing usability of augmented-reality-based mobile escape guidelines for radioactive accidents.
Tsai MK, Yau NJ. Tsai MK, et al. J Environ Radioact. 2013 Apr;118:15-20. doi: 10.1016/j.jenvrad.2012.11.001. Epub 2012 Dec 7. J Environ Radioact. 2013. PMID: 23220541 Review.
Cited by
- Pattern detection in the vehicular activity of bus rapid transit systems.
Martínez-González JU, P Riascos A, Mateos JL. Martínez-González JU, et al. PLoS One. 2024 Oct 29;19(10):e0312541. doi: 10.1371/journal.pone.0312541. eCollection 2024. PLoS One. 2024. PMID: 39471165 Free PMC article. - Analyzing the Effect of Time in Migration Measurement Using Georeferenced Digital Trace Data.
Fiorio L, Zagheni E, Abel G, Hill J, Pestre G, Letouzé E, Cai J. Fiorio L, et al. Demography. 2021 Feb 1;58(1):51-74. doi: 10.1215/00703370-8917630. Demography. 2021. PMID: 33834241 Free PMC article. - The receptive versus current risks of Plasmodium falciparum transmission in northern Namibia: implications for elimination.
Noor AM, Uusiku P, Kamwi RN, Katokele S, Ntomwa B, Alegana VA, Snow RW. Noor AM, et al. BMC Infect Dis. 2013 Apr 23;13:184. doi: 10.1186/1471-2334-13-184. BMC Infect Dis. 2013. PMID: 23617955 Free PMC article. - Social media fingerprints of unemployment.
Llorente A, Garcia-Herranz M, Cebrian M, Moro E. Llorente A, et al. PLoS One. 2015 May 28;10(5):e0128692. doi: 10.1371/journal.pone.0128692. eCollection 2015. PLoS One. 2015. PMID: 26020628 Free PMC article. - Using mobile phone data to predict the spatial spread of cholera.
Bengtsson L, Gaudart J, Lu X, Moore S, Wetter E, Sallah K, Rebaudet S, Piarroux R. Bengtsson L, et al. Sci Rep. 2015 Mar 9;5:8923. doi: 10.1038/srep08923. Sci Rep. 2015. PMID: 25747871 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical