ProteoWizard: open source software for rapid proteomics tools development - PubMed (original) (raw)
ProteoWizard: open source software for rapid proteomics tools development
Darren Kessner et al. Bioinformatics. 2008.
Abstract
Summary: The ProteoWizard software project provides a modular and extensible set of open-source, cross-platform tools and libraries. The tools perform proteomics data analyses; the libraries enable rapid tool creation by providing a robust, pluggable development framework that simplifies and unifies data file access, and performs standard proteomics and LCMS dataset computations. The library contains readers and writers of the mzML data format, which has been written using modern C++ techniques and design principles and supports a variety of platforms with native compilers. The software has been specifically released under the Apache v2 license to ensure it can be used in both academic and commercial projects. In addition to the library, we also introduce a rapidly growing set of companion tools whose implementation helps to illustrate the simplicity of developing applications on top of the ProteoWizard library.
Availability: Cross-platform software that compiles using native compilers (i.e. GCC on Linux, MSVC on Windows and XCode on OSX) is available for download free of charge, at http://proteowizard.sourceforge.net. This website also provides code examples, and documentation. It is our hope the ProteoWizard project will become a standard platform for proteomics development; consequently, code use, contribution and further development are strongly encouraged.
Figures
Fig. 1.
ProteoWizard architecture.
Fig. 2.
Architecture of msAccess tool (utility and data layers).
Fig. 3.
msPicture output.
Similar articles
- ms-data-core-api: an open-source, metadata-oriented library for computational proteomics.
Perez-Riverol Y, Uszkoreit J, Sanchez A, Ternent T, Del Toro N, Hermjakob H, Vizcaíno JA, Wang R. Perez-Riverol Y, et al. Bioinformatics. 2015 Sep 1;31(17):2903-5. doi: 10.1093/bioinformatics/btv250. Epub 2015 Apr 24. Bioinformatics. 2015. PMID: 25910694 Free PMC article. - TOPP--the OpenMS proteomics pipeline.
Kohlbacher O, Reinert K, Gröpl C, Lange E, Pfeifer N, Schulz-Trieglaff O, Sturm M. Kohlbacher O, et al. Bioinformatics. 2007 Jan 15;23(2):e191-7. doi: 10.1093/bioinformatics/btl299. Bioinformatics. 2007. PMID: 17237091 - Installation and use of LabKey Server for proteomics.
Eckels J, Hussey P, Nelson EK, Myers T, Rauch A, Bellew M, Connolly B, Law W, Eng JK, Katz J, McIntosh M, Mallick P, Igra M. Eckels J, et al. Curr Protoc Bioinformatics. 2011 Dec;Chapter 13:13.5.1-13.5.25. doi: 10.1002/0471250953.bi1305s36. Curr Protoc Bioinformatics. 2011. PMID: 22161569 - Free Open Source Software for Protein and Peptide Mass Spectrometry- based Science.
Rusconi F. Rusconi F. Curr Protein Pept Sci. 2021;22(2):134-147. doi: 10.2174/1389203722666210118160946. Curr Protein Pept Sci. 2021. PMID: 33461461 Review. - Updates on resources, software tools, and databases for plant proteomics in 2016-2017.
Misra BB. Misra BB. Electrophoresis. 2018 Jul;39(13):1543-1557. doi: 10.1002/elps.201700401. Epub 2018 Mar 1. Electrophoresis. 2018. PMID: 29420853 Review.
Cited by
- Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics.
Giacomoni F, Le Corguillé G, Monsoor M, Landi M, Pericard P, Pétéra M, Duperier C, Tremblay-Franco M, Martin JF, Jacob D, Goulitquer S, Thévenot EA, Caron C. Giacomoni F, et al. Bioinformatics. 2015 May 1;31(9):1493-5. doi: 10.1093/bioinformatics/btu813. Epub 2014 Dec 19. Bioinformatics. 2015. PMID: 25527831 Free PMC article. - A lipidome atlas in MS-DIAL 4.
Tsugawa H, Ikeda K, Takahashi M, Satoh A, Mori Y, Uchino H, Okahashi N, Yamada Y, Tada I, Bonini P, Higashi Y, Okazaki Y, Zhou Z, Zhu ZJ, Koelmel J, Cajka T, Fiehn O, Saito K, Arita M, Arita M. Tsugawa H, et al. Nat Biotechnol. 2020 Oct;38(10):1159-1163. doi: 10.1038/s41587-020-0531-2. Epub 2020 Jun 15. Nat Biotechnol. 2020. PMID: 32541957 - Mass spectrometric determination of early and advanced glycation in biology.
Rabbani N, Ashour A, Thornalley PJ. Rabbani N, et al. Glycoconj J. 2016 Aug;33(4):553-68. doi: 10.1007/s10719-016-9709-8. Epub 2016 Jul 20. Glycoconj J. 2016. PMID: 27438287 Free PMC article. Review. - An adaptive alignment algorithm for quality-controlled label-free LC-MS.
Sandin M, Ali A, Hansson K, Månsson O, Andreasson E, Resjö S, Levander F. Sandin M, et al. Mol Cell Proteomics. 2013 May;12(5):1407-20. doi: 10.1074/mcp.O112.021907. Epub 2013 Jan 9. Mol Cell Proteomics. 2013. PMID: 23306530 Free PMC article. - Bacillus species are core microbiota of resistant maize cultivars that induce host metabolic defense against corn stalk rot.
Xia X, Wei Q, Wu H, Chen X, Xiao C, Ye Y, Liu C, Yu H, Guo Y, Sun W, Liu W. Xia X, et al. Microbiome. 2024 Aug 23;12(1):156. doi: 10.1186/s40168-024-01887-w. Microbiome. 2024. PMID: 39180084 Free PMC article.
References
- Kohlbacher O, et al. TOPP–the OpenMS proteomics pipeline. Bioinformatics. 2007;23:e191–e197. - PubMed
- Orchard S, et al. Five years of progress in the standardization of proteomics data 4th annual spring workshop of the HUPO-proteomics standards initiative April 23-25, 2007 Ecole Nationale Superieure (ENS), Lyon, France. Proteomics. 2007;7:3436–3440. - PubMed
- Pedrioli PG, et al. A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol. 2004;22:1459–1466. - PubMed
- Rauch A, et al. Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J. Proteome Res. 2006;5:112–121. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources