Training-induced brain structure changes in the elderly - PubMed (original) (raw)

Training-induced brain structure changes in the elderly

Janina Boyke et al. J Neurosci. 2008.

Abstract

It has been suggested that learning is associated with a transient and highly selective increase in brain gray matter in healthy young volunteers. It is not clear whether and to what extent the aging brain is still able to exhibit such structural plasticity. We built on our original study, now focusing on healthy senior citizens. We observed that elderly persons were able to learn three-ball cascade juggling, but with less proficiency compared with 20-year-old adolescents. Similar to the young group, gray-matter changes in the older brain related to skill acquisition were observed in area hMT/V5 (middle temporal area of the visual cortex). In addition, elderly volunteers who learned to juggle showed transient increases in gray matter in the hippocampus on the left side and in the nucleus accumbens bilaterally.

PubMed Disclaimer

Figures

Figure 1.

Figure 1.

Flow chart of volunteer recruitment. Only 10 of 44 individuals were able to juggle 60 s at time point 2. Fifteen volunteers were fluent jugglers and accomplished between 40 and 60 s. We therefore compared the data of 25 individuals of the jugglers group who had the best results in endurance juggling (mean time, 56.7 s) with the data sets of the 25 controls.

Figure 2.

Figure 2.

Time point (before intervention, after intervention) by group (jugglers, controls) interaction analysis, testing for greater changes in the jugglers group. Gray-matter increase is shown superimposed on a normalized T1 image. The left side of the picture is the left side of the brain. A, A significant gray-matter expansion was found in hMT/V5 on the right side. This area is virtually the same area as demonstrated previously (Draganski et al., 2004). The box plot shows relative gray-matter change in the peak voxel in the right hMT for all jugglers over the three time points (error bars indicate the SD, range, and the mean for each time point). B, C, Only the jugglers group, but not the controls, showed a significant gray-matter increase in the hippocampus on the left side (B) and the nucleus accumbens bilaterally (C). This increase of gray matter reversed when study participants were examined at time point 3 (after the weeks without practicing).

Similar articles

Cited by

References

    1. Buonomano DV, Merzenich MM. Cortical plasticity: from synapses to maps. Annu Rev Neurosci. 1998;21:149–186. - PubMed
    1. Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, Kramer AF. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci. 2003;58:176–180. - PubMed
    1. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, Elavsky S, Marquez DX, Hu L, Kramer AF. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61:1166–1170. - PubMed
    1. DeFelipe J. Brain plasticity and mental processes: Cajal again. Nat Rev Neurosci. 2006;7:811–817. - PubMed
    1. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: Changes in grey matter induced by training. Nature. 2004;427:311–312. - PubMed

Publication types

MeSH terms

LinkOut - more resources