PRESTO: rapid calculation of order statistic distributions and multiple-testing adjusted P-values via permutation for one and two-stage genetic association studies - PubMed (original) (raw)
PRESTO: rapid calculation of order statistic distributions and multiple-testing adjusted P-values via permutation for one and two-stage genetic association studies
Brian L Browning. BMC Bioinformatics. 2008.
Abstract
Background: Large-scale genetic association studies can test hundreds of thousands of genetic markers for association with a trait. Since the genetic markers may be correlated, a Bonferroni correction is typically too stringent a correction for multiple testing. Permutation testing is a standard statistical technique for determining statistical significance when performing multiple correlated tests for genetic association. However, permutation testing for large-scale genetic association studies is computationally demanding and calls for optimized algorithms and software. PRESTO is a new software package for genetic association studies that performs fast computation of multiple-testing adjusted P-values via permutation of the trait.
Results: PRESTO is an order of magnitude faster than other existing permutation testing software, and can analyze a large genome-wide association study (500 K markers, 5 K individuals, 1 K permutations) in approximately one hour of computing time. PRESTO has several unique features that are useful in a wide range of studies: it reports empirical null distributions for the top-ranked statistics (i.e. order statistics), it performs user-specified combinations of allelic and genotypic tests, it performs stratified analysis when sampled individuals are from multiple populations and each individual's population of origin is specified, and it determines significance levels for one and two-stage genotyping designs. PRESTO is designed for case-control studies, but can also be applied to trio data (parents and affected offspring) if transmitted parental alleles are coded as case alleles and untransmitted parental alleles are coded as control alleles.
Conclusion: PRESTO is a platform-independent software package that performs fast and flexible permutation testing for genetic association studies. The PRESTO executable file, Java source code, example data, and documentation are freely available at http://www.stat.auckland.ac.nz/\~browning/presto/presto.html.
Similar articles
- Rapid and robust resampling-based multiple-testing correction with application in a genome-wide expression quantitative trait loci study.
Zhang X, Huang S, Sun W, Wang W. Zhang X, et al. Genetics. 2012 Apr;190(4):1511-20. doi: 10.1534/genetics.111.137737. Epub 2012 Jan 31. Genetics. 2012. PMID: 22298711 Free PMC article. - A fast method for computing high-significance disease association in large population-based studies.
Kimmel G, Shamir R. Kimmel G, et al. Am J Hum Genet. 2006 Sep;79(3):481-92. doi: 10.1086/507317. Epub 2006 Jul 24. Am J Hum Genet. 2006. PMID: 16909386 Free PMC article. - PERMORY: an LD-exploiting permutation test algorithm for powerful genome-wide association testing.
Pahl R, Schäfer H. Pahl R, et al. Bioinformatics. 2010 Sep 1;26(17):2093-100. doi: 10.1093/bioinformatics/btq399. Epub 2010 Jul 6. Bioinformatics. 2010. PMID: 20605926 - OPATs: Omnibus P-value association tests.
Chen CW, Yang HC. Chen CW, et al. Brief Bioinform. 2019 Jan 18;20(1):1-14. doi: 10.1093/bib/bbx068. Brief Bioinform. 2019. PMID: 28981573 Free PMC article. Review. - [Genome-wide association study on complex diseases: genetic statistical issues].
Yan WL. Yan WL. Yi Chuan. 2008 May;30(5):543-9. doi: 10.3724/sp.j.1005.2008.00543. Yi Chuan. 2008. PMID: 18487142 Review. Chinese.
Cited by
- Enhanced adaptive permutation test with negative binomial distribution in genome-wide omics datasets.
Huh I, Park T. Huh I, et al. Genes Genomics. 2024 Nov 6. doi: 10.1007/s13258-024-01584-w. Online ahead of print. Genes Genomics. 2024. PMID: 39503929 - Functional Analysis of G6PD Variants Associated With Low G6PD Activity in the All of Us Research Program.
Powell NR, Geck RC, Lai D, Shugg T, Skaar TC, Dunham M. Powell NR, et al. medRxiv [Preprint]. 2024 Apr 14:2024.04.12.24305393. doi: 10.1101/2024.04.12.24305393. medRxiv. 2024. PMID: 38645242 Free PMC article. Preprint. - Pulmonary Cellular Toxicity in Alpha-1 Antitrypsin Deficiency.
Abo KM, Merritt C, Basil MC, Lin SM, Cantu E, Morley MP, Bawa P, Gallagher M, Byers DE, Morrisey EE, Wilson AA. Abo KM, et al. Chest. 2024 Sep;166(3):472-479. doi: 10.1016/j.chest.2024.02.013. Epub 2024 Feb 14. Chest. 2024. PMID: 38360172 Free PMC article. No abstract available. - Single-cell mapping identifies MSI+ cells as a common origin for diverse subtypes of pancreatic cancer.
Rajbhandari N, Hamilton M, Quintero CM, Ferguson LP, Fox R, Schürch CM, Wang J, Nakamura M, Lytle NK, McDermott M, Diaz E, Pettit H, Kritzik M, Han H, Cridebring D, Wen KW, Tsai S, Goggins MG, Lowy AM, Wechsler-Reya RJ, Von Hoff DD, Newman AM, Reya T. Rajbhandari N, et al. Cancer Cell. 2023 Nov 13;41(11):1989-2005.e9. doi: 10.1016/j.ccell.2023.09.008. Epub 2023 Oct 5. Cancer Cell. 2023. PMID: 37802055 - Chromosome evolution and the genetic basis of agronomically important traits in greater yam.
Bredeson JV, Lyons JB, Oniyinde IO, Okereke NR, Kolade O, Nnabue I, Nwadili CO, Hřibová E, Parker M, Nwogha J, Shu S, Carlson J, Kariba R, Muthemba S, Knop K, Barton GJ, Sherwood AV, Lopez-Montes A, Asiedu R, Jamnadass R, Muchugi A, Goodstein D, Egesi CN, Featherston J, Asfaw A, Simpson GG, Doležel J, Hendre PS, Van Deynze A, Kumar PL, Obidiegwu JE, Bhattacharjee R, Rokhsar DS. Bredeson JV, et al. Nat Commun. 2022 Apr 14;13(1):2001. doi: 10.1038/s41467-022-29114-w. Nat Commun. 2022. PMID: 35422045 Free PMC article.
References
- Besag J, Clifford P. Sequential Monte-Carlo p-values. Biometrika. 1991;78:301–304.
- Agresti A. Categorical Data Analysis. second. New York: John Wiley & Sons; 2002.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources