microRNAs: tiny regulators of synapse function in development and disease - PubMed (original) (raw)
Review
microRNAs: tiny regulators of synapse function in development and disease
Silvia Bicker et al. J Cell Mol Med. 2008 Sep-Oct.
Abstract
The development and function of neuronal circuits within the brain are orchestrated by sophisticated gene regulatory mechanisms. Recently, microRNAs have emerged as a novel class of small RNAs that fine-tune protein synthesis. microRNAs are abundantly expressed in the vertebrate nervous system, where they contribute to the specification of neuronal cell identity. Moreover, microRNAs also play an important role in mature neurons. This review summarizes the current knowledge about the function of microRNAs in the nervous system with special emphasis on synapse formation and plasticity. The second part of this work will discuss the potential involvement of microRNAs in neurologic diseases. The study of brain microRNAs promises to expand our understanding of the mechanisms underlying higher cognitive functions and neurologic diseases.
Figures
1
Working model for the role of miRNAs in local dendritic protein synthesis and spine morphology in CNS physiology and disease. Left: Dendritic miRNA recruits the RISC to the dendritic target mRNA, thereby inhibiting protein synthesis and restricting dendritic spine growth under conditions of low synaptic activity. Middle: Synaptic activation triggers release of neurotransmitters and neurotrophic factors, whose binding to the respective receptors leads to an activation of dendritic mRNA translation, presumably via post-translational modification (e.g. phosphorylation) and subsequent inactivation of inhibitory RISC components. Enhanced synthesis of miRNA-regulated proteins results in dendritic spine growth. Right: In neurologic diseases, binding of the miRNA and(or proteins (e.g. FMRP, SMN,…) to the dendritic target mRNA might be impaired, leading to an aberrant regulation of dendritic mRNA translation. The resulting deregulated expression of disease-related proteins (e.g. Limk1, MeCP2,…) might contribute to the pathological spine phenotype observed in certain CNS disorders.
Similar articles
- MicroRNAs in vertebrate synapse development.
Fiore R, Schratt G. Fiore R, et al. ScientificWorldJournal. 2007 Nov 2;7:167-77. doi: 10.1100/tsw.2007.196. ScientificWorldJournal. 2007. PMID: 17982590 Free PMC article. Review. - MicroRNA-132, -134, and -138: a microRNA troika rules in neuronal dendrites.
Bicker S, Lackinger M, Weiß K, Schratt G. Bicker S, et al. Cell Mol Life Sci. 2014 Oct;71(20):3987-4005. doi: 10.1007/s00018-014-1671-7. Epub 2014 Jul 10. Cell Mol Life Sci. 2014. PMID: 25008044 Free PMC article. Review. - MicroRNAs in synapse development: tiny molecules to remember.
Fiore R, Schratt G. Fiore R, et al. Expert Opin Biol Ther. 2007 Dec;7(12):1823-31. doi: 10.1517/14712598.7.12.1823. Expert Opin Biol Ther. 2007. PMID: 18034648 Review. - Fine-tuning neural gene expression with microRNAs.
Schratt G. Schratt G. Curr Opin Neurobiol. 2009 Apr;19(2):213-9. doi: 10.1016/j.conb.2009.05.015. Epub 2009 Jun 17. Curr Opin Neurobiol. 2009. PMID: 19539460 Review. - Small Differences and Big Changes: The Many Variables of MicroRNA Expression and Function in the Brain.
Parkins EV, Gross C. Parkins EV, et al. J Neurosci. 2024 Aug 7;44(32):e0365242024. doi: 10.1523/JNEUROSCI.0365-24.2024. J Neurosci. 2024. PMID: 39111834 Review.
Cited by
- Post-transcriptional trafficking and regulation of neuronal gene expression.
Goldie BJ, Cairns MJ. Goldie BJ, et al. Mol Neurobiol. 2012 Feb;45(1):99-108. doi: 10.1007/s12035-011-8222-0. Epub 2011 Dec 14. Mol Neurobiol. 2012. PMID: 22167484 Free PMC article. Review. - A microRNA repertoire for functional genome research in rainbow trout (Oncorhynchus mykiss).
Salem M, Xiao C, Womack J, Rexroad CE 3rd, Yao J. Salem M, et al. Mar Biotechnol (NY). 2010 Aug;12(4):410-29. doi: 10.1007/s10126-009-9232-z. Epub 2009 Oct 9. Mar Biotechnol (NY). 2010. PMID: 19816740 - MicroRNA-708-5p affects proliferation and invasion of osteosarcoma cells by targeting URGCP.
Sui C, Liu D, Hu Y, Zhang L. Sui C, et al. Exp Ther Med. 2019 Mar;17(3):2235-2241. doi: 10.3892/etm.2019.7171. Epub 2019 Jan 15. Exp Ther Med. 2019. PMID: 30783484 Free PMC article. - miRNAome analysis of the mammalian neuronal nicotinic acetylcholine receptor gene family.
Hogan EM, Casserly AP, Scofield MD, Mou Z, Zhao-Shea R, Johnson CW, Tapper AR, Gardner PD. Hogan EM, et al. RNA. 2014 Dec;20(12):1890-9. doi: 10.1261/rna.034066.112. Epub 2014 Oct 24. RNA. 2014. PMID: 25344397 Free PMC article. - Network analysis of microRNA and mRNA seasonal dynamics in a highly plastic sensorimotor neural circuit.
Larson TA, Lent KL, Bammler TK, MacDonald JW, Wood WE, Caras ML, Thatra NM, Budzillo A, Perkel DJ, Brenowitz EA. Larson TA, et al. BMC Genomics. 2015 Nov 6;16:905. doi: 10.1186/s12864-015-2175-z. BMC Genomics. 2015. PMID: 26545368 Free PMC article.
References
- Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20:515–24. - PubMed
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. - PubMed
- Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5. - PubMed
- Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36. - PubMed
- Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources