Parallelizing genetic linkage analysis: a case study for applying parallel computation in molecular biology - PubMed (original) (raw)
Parallelizing genetic linkage analysis: a case study for applying parallel computation in molecular biology
P L Miller et al. Comput Biomed Res. 1991 Jun.
Abstract
Parallel computers offer a solution to improve the lengthy computation time of many conventional, sequential programs used in molecular biology. On a parallel computer, different pieces of the computation are performed simultaneously on different processors. LINKMAP is a sequential program widely used by scientists to perform genetic linkage analysis. We have converted LINKMAP to run on a parallel computer, using the machine-independent parallel programming language, Linda. Using the parallelization of LINKMAP as a case study, the paper outlines an approach to converting existing highly iterative programs to a parallel form. The paper describes the steps involved in converting the sequential program to a parallel program. It presents performance benchmarks comparing the sequential version of LINKMAP with the parallel version running on different parallel machines. The paper also discusses alternative approaches to the problem of "load balancing," making sure the computational load is shared as evenly as possible among the available processors.
Similar articles
- Parallel computation and FASTA: confronting the problem of parallel database search for a fast sequence comparison algorithm.
Miller PL, Nadkarni PM, Carriero NM. Miller PL, et al. Comput Appl Biosci. 1991 Jan;7(1):71-8. doi: 10.1093/bioinformatics/7.1.71. Comput Appl Biosci. 1991. PMID: 2004277 - Harnessing networked workstations as a powerful parallel computer: a general paradigm illustrated using three programs for genetic linkage analysis.
Miller PL, Nadkarni PM, Bercovitz PA. Miller PL, et al. Comput Appl Biosci. 1992 Apr;8(2):141-7. doi: 10.1093/bioinformatics/8.2.141. Comput Appl Biosci. 1992. PMID: 1591609 - Comparing machine-independent versus machine-specific parallelization of a software platform for biological sequence comparison.
Miller PL, Nadkarni PM, Pearson WR. Miller PL, et al. Comput Appl Biosci. 1992 Apr;8(2):167-75. doi: 10.1093/bioinformatics/8.2.167. Comput Appl Biosci. 1992. PMID: 1591612 - Developments in gene mapping with linkage methods.
Risch N. Risch N. Curr Opin Genet Dev. 1991 Jun;1(1):93-8. doi: 10.1016/0959-437x(91)80048-q. Curr Opin Genet Dev. 1991. PMID: 1840884 Review. - Linkage analysis of genetic disorders.
Taylor EW, Xu J, Jabs EW, Meyers DA. Taylor EW, et al. Methods Mol Biol. 1997;68:11-25. doi: 10.1385/0-89603-482-8:11. Methods Mol Biol. 1997. PMID: 9055247 Review.
Cited by
- Graphically-enabled integration of bioinformatics tools allowing parallel execution.
Cheung KH, Miller P, Sherman A, Weston S, Stratmann E, Schultz M, Snyder M, Kumar A. Cheung KH, et al. Proc AMIA Symp. 2000:141-5. Proc AMIA Symp. 2000. PMID: 11079861 Free PMC article. - MLIP: using multiple processors to compute the posterior probability of linkage.
Govil M, Segre AM, Vieland VJ. Govil M, et al. BMC Bioinformatics. 2008 May 28;9 Suppl 6(Suppl 6):S2. doi: 10.1186/1471-2105-9-S6-S2. BMC Bioinformatics. 2008. PMID: 18541055 Free PMC article. - Faster sequential genetic linkage computations.
Cottingham RW Jr, Idury RM, Schäffer AA. Cottingham RW Jr, et al. Am J Hum Genet. 1993 Jul;53(1):252-63. Am J Hum Genet. 1993. PMID: 8317490 Free PMC article. - Online system for faster multipoint linkage analysis via parallel execution on thousands of personal computers.
Silberstein M, Tzemach A, Dovgolevsky N, Fishelson M, Schuster A, Geiger D. Silberstein M, et al. Am J Hum Genet. 2006 Jun;78(6):922-35. doi: 10.1086/504158. Epub 2006 May 1. Am J Hum Genet. 2006. PMID: 16685644 Free PMC article.