Positioning mitochondrial plasticity within cellular signaling cascades - PubMed (original) (raw)
Review
. 2009 Jan;1793(1):154-70.
doi: 10.1016/j.bbamcr.2008.07.008. Epub 2008 Jul 23.
Affiliations
- PMID: 18694785
- DOI: 10.1016/j.bbamcr.2008.07.008
Free article
Review
Positioning mitochondrial plasticity within cellular signaling cascades
Vincent Soubannier et al. Biochim Biophys Acta. 2009 Jan.
Free article
Abstract
Mitochondria evolved from alpha-proteobacteria captured within a host between two and three billion years ago. This origin resulted in the formation of a double-layered organelle resulting in four distinct sub-compartments: the outer membrane, the intermembrane space, the inner membrane and the matrix. The inner membrane is organized in cristae, harboring the respiratory chain and ATP synthase complexes responsible of the oxidative phosphorylation, the main energy-generating system of the cell. It is generally considered that the ultrastructure of the inner membrane provides a large variety of morphologies that facilitate metabolic output. This classical view of mitochondria as bean-shaped organelles was static until in the last decade when new imaging studies and genetic screens provided a more accurate description of a dynamic mitochondrial reticulum that fuse and divide continuously. Since then significant findings have been made in the study of machineries responsible for fusion, fission and motility, however the mechanisms and signals that regulate mitochondrial dynamics are only beginning to emerge. A growing body of evidence indicates that metabolic and cellular signals influence mitochondrial dynamics, leading to a new understanding of how changes in mitochondrial shape can have a profound impact on the functional output of the organelle. The mechanisms that regulate mitochondrial morphology are incompletely understood, but evidence to date suggests that the morphology machinery is modulated through the use of post-translational modifications, including nucleotide-binding proteins, phosphorylation, ubiquitination, SUMOylation, and changes in the lipid environment. This review focuses on the molecular switches that control mitochondrial dynamics and the integration of mitochondrial morphology within cellular signaling cascades.
Similar articles
- Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution.
Wilkens V, Kohl W, Busch K. Wilkens V, et al. J Cell Sci. 2013 Jan 1;126(Pt 1):103-16. doi: 10.1242/jcs.108852. Epub 2012 Oct 4. J Cell Sci. 2013. PMID: 23038773 - Plant mitochondrial dynamics and the role of membrane lipids.
Pan R, Hu J. Pan R, et al. Plant Signal Behav. 2015;10(10):e1050573. doi: 10.1080/15592324.2015.1050573. Epub 2015 Aug 28. Plant Signal Behav. 2015. PMID: 26317892 Free PMC article. Review. - The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery.
Palmer CS, Osellame LD, Stojanovski D, Ryan MT. Palmer CS, et al. Cell Signal. 2011 Oct;23(10):1534-45. doi: 10.1016/j.cellsig.2011.05.021. Epub 2011 Jun 13. Cell Signal. 2011. PMID: 21683788 Review. - Mitochondria: more than just a powerhouse.
McBride HM, Neuspiel M, Wasiak S. McBride HM, et al. Curr Biol. 2006 Jul 25;16(14):R551-60. doi: 10.1016/j.cub.2006.06.054. Curr Biol. 2006. PMID: 16860735 Review. - The cell biology of mitochondrial membrane dynamics.
Giacomello M, Pyakurel A, Glytsou C, Scorrano L. Giacomello M, et al. Nat Rev Mol Cell Biol. 2020 Apr;21(4):204-224. doi: 10.1038/s41580-020-0210-7. Epub 2020 Feb 18. Nat Rev Mol Cell Biol. 2020. PMID: 32071438 Review.
Cited by
- Mitochondrial dysfunction and oxidative stress in Parkinson's disease.
Subramaniam SR, Chesselet MF. Subramaniam SR, et al. Prog Neurobiol. 2013 Jul-Aug;106-107:17-32. doi: 10.1016/j.pneurobio.2013.04.004. Epub 2013 Apr 30. Prog Neurobiol. 2013. PMID: 23643800 Free PMC article. Review. - Air Plasma-Activated Medium Evokes a Death-Associated Perinuclear Mitochondrial Clustering.
Suzuki-Karasaki M, Ando T, Ochiai Y, Kawahara K, Suzuki-Karasaki M, Nakayama H, Suzuki-Karasaki Y. Suzuki-Karasaki M, et al. Int J Mol Sci. 2022 Jan 20;23(3):1124. doi: 10.3390/ijms23031124. Int J Mol Sci. 2022. PMID: 35163042 Free PMC article. - Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis.
Cho SG, Du Q, Huang S, Dong Z. Cho SG, et al. Am J Physiol Renal Physiol. 2010 Jul;299(1):F199-206. doi: 10.1152/ajprenal.00716.2009. Epub 2010 Apr 21. Am J Physiol Renal Physiol. 2010. PMID: 20410216 Free PMC article. - Mitochondrial Ca2+ channels: Great unknowns with important functions.
Malli R, Graier WF. Malli R, et al. FEBS Lett. 2010 May 17;584(10):1942-7. doi: 10.1016/j.febslet.2010.01.010. Epub 2010 Jan 15. FEBS Lett. 2010. PMID: 20074570 Free PMC article. Review. - Morphology of Mitochondria in Syncytial Annelid Female Germ-Line Cyst Visualized by Serial Block-Face SEM.
Urbisz AZ, Student S, Śliwińska MA, Małota K. Urbisz AZ, et al. Int J Cell Biol. 2020 Jan 7;2020:7483467. doi: 10.1155/2020/7483467. eCollection 2020. Int J Cell Biol. 2020. PMID: 32395131 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous