The platelet release reaction: just when you thought platelet secretion was simple - PubMed (original) (raw)
Review
The platelet release reaction: just when you thought platelet secretion was simple
Qiansheng Ren et al. Curr Opin Hematol. 2008 Sep.
Abstract
Purpose of review: In response to agonists produced at vascular lesions, platelets release a host of components from their three granules: dense core, alpha, and lysosome. This releasate activates other platelets, promotes wound repair, and initiates inflammatory responses. Although widely accepted, the specific mechanisms underlying platelet secretion are only now coming to light. This review focuses on the core machinery required for platelet secretion.
Recent findings: Proteomic analyses have provided a catalog of the components released from activated platelets. Experiments using a combination of in-vitro secretion assays and knockout mice have led to assignments of both vesicle-soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (v-SNARE) and target membrane SNARE to each of the three secretion events. SNARE knockout mice are also proving to be useful models for probing the role of platelet exocytosis in vivo. Other studies are beginning to identify SNARE regulators, which control when and where SNAREs interact during platelet activation.
Summary: A complex set of protein-protein interactions control the membrane fusion events required for the platelet release reaction. SNARE proteins are the core elements but the proteins that control SNARE interactions represent key points at which platelet signaling cascades could affect secretion and thrombosis.
Similar articles
- The nuts and bolts of the platelet release reaction.
Joshi S, Whiteheart SW. Joshi S, et al. Platelets. 2017 Mar;28(2):129-137. doi: 10.1080/09537104.2016.1240768. Epub 2016 Nov 16. Platelets. 2017. PMID: 27848265 Free PMC article. Review. - Regulated secretion in platelets: identification of elements of the platelet exocytosis machinery.
Lemons PP, Chen D, Bernstein AM, Bennett MK, Whiteheart SW. Lemons PP, et al. Blood. 1997 Aug 15;90(4):1490-500. Blood. 1997. PMID: 9269766 - Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release reaction.
Ren Q, Barber HK, Crawford GL, Karim ZA, Zhao C, Choi W, Wang CC, Hong W, Whiteheart SW. Ren Q, et al. Mol Biol Cell. 2007 Jan;18(1):24-33. doi: 10.1091/mbc.e06-09-0785. Epub 2006 Oct 25. Mol Biol Cell. 2007. PMID: 17065550 Free PMC article. - IκB kinase phosphorylation of SNAP-23 controls platelet secretion.
Karim ZA, Zhang J, Banerjee M, Chicka MC, Al Hawas R, Hamilton TR, Roche PA, Whiteheart SW. Karim ZA, et al. Blood. 2013 May 30;121(22):4567-74. doi: 10.1182/blood-2012-11-470468. Epub 2013 Apr 23. Blood. 2013. PMID: 23613522 Free PMC article. - A unique SNARE machinery for exocytosis of cytotoxic granules and platelets granules.
Tang BL. Tang BL. Mol Membr Biol. 2015;32(4):120-6. doi: 10.3109/09687688.2015.1079934. Mol Membr Biol. 2015. PMID: 26508555 Review.
Cited by
- Treatment with quercetin and 3',4'-dihydroxyflavonol inhibits platelet function and reduces thrombus formation in vivo.
Mosawy S, Jackson DE, Woodman OL, Linden MD. Mosawy S, et al. J Thromb Thrombolysis. 2013 Jul;36(1):50-7. doi: 10.1007/s11239-012-0827-2. J Thromb Thrombolysis. 2013. PMID: 23070586 - Signaling during platelet adhesion and activation.
Li Z, Delaney MK, O'Brien KA, Du X. Li Z, et al. Arterioscler Thromb Vasc Biol. 2010 Dec;30(12):2341-9. doi: 10.1161/ATVBAHA.110.207522. Epub 2010 Nov 11. Arterioscler Thromb Vasc Biol. 2010. PMID: 21071698 Free PMC article. Review. - Secrets of platelet exocytosis - what do we really know about platelet secretion mechanisms?
Golebiewska EM, Poole AW. Golebiewska EM, et al. Br J Haematol. 2013 Nov 30;165(2):204-16. doi: 10.1111/bjh.12682. Online ahead of print. Br J Haematol. 2013. PMID: 24588354 Free PMC article. - Qualitative and Quantitative Comparison of Plasma Exosomes from Neonates and Adults.
Peñas-Martínez J, Barrachina MN, Cuenca-Zamora EJ, Luengo-Gil G, Bravo SB, Caparrós-Pérez E, Teruel-Montoya R, Eliseo-Blanco J, Vicente V, García Á, Martínez-Martínez I, Ferrer-Marín F. Peñas-Martínez J, et al. Int J Mol Sci. 2021 Feb 15;22(4):1926. doi: 10.3390/ijms22041926. Int J Mol Sci. 2021. PMID: 33672065 Free PMC article. - Role of IκB kinase β in regulating the remodeling of the CARMA1-Bcl10-MALT1 complex.
Karim ZA, Hensch NR, Qasim H, Alshbool FZ, Khasawneh FT. Karim ZA, et al. Biochem Biophys Res Commun. 2018 Jun 2;500(2):268-274. doi: 10.1016/j.bbrc.2018.04.057. Epub 2018 Apr 14. Biochem Biophys Res Commun. 2018. PMID: 29649481 Free PMC article.
References
- Huizing M, Anikster Y, Gahl WA. Hermansky-Pudlak syndrome and related disorders of organelle formation. Traffic. 2000;1:823–835. - PubMed
- Li W, Rusiniak ME, Chintala S, et al. Murine Hermansky-Pudlak syndrome genes: regulators of lysosome-related organelles. Bioessays. 2004;26:616–628. - PubMed
- Swank RT, Novak EK, McGarry MP, et al. Mouse models of Hermansky-Pudlak syndrome: a review. Pigment Cell Res. 1998;11:60–80. - PubMed
- White JG. Platelet granule disorders. Crit Rev Oncol Hematol. 1986;4:337–377. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- HL56652/HL/NHLBI NIH HHS/United States
- R01 HL091893-01/HL/NHLBI NIH HHS/United States
- HL091893/HL/NHLBI NIH HHS/United States
- R01 HL056652-11/HL/NHLBI NIH HHS/United States
- R01 HL056652/HL/NHLBI NIH HHS/United States
- R01 HL091893/HL/NHLBI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials