Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography - PubMed (original) (raw)
Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography
M Corbetta et al. J Neurosci. 1991 Aug.
Abstract
Positron emission tomography (PET) was used to identify the neural systems involved in discriminating the shape, color, and speed of a visual stimulus under conditions of selective and divided attention. Psychophysical evidence indicated that the sensitivity for discriminating subtle stimulus changes in a same-different matching task was higher when subjects selectively attended to one attribute than when they divided attention among the attributes. PET measurements of brain activity indicated that modulations of extrastriate visual activity were primarily produced by task conditions of selective attention. Attention to speed activated a region in the left inferior parietal lobule. Attention to color activated a region in the collateral sulcus and dorsolateral occipital cortex, while attention to shape activated collateral sulcus (similarly to color), fusiform and parahippocampal gyri, and temporal cortex along the superior temporal sulcus. Outside the visual system, selective and divided attention activated nonoverlapping sets of brain regions. Selective conditions activated globus pallidus, caudate nucleus, lateral orbitofrontal cortex, posterior thalamus/colliculus, and insular-premotor regions, while the divided condition activated the anterior cingulate and dorsolateral prefrontal cortex. The results in the visual system demonstrate that selective attention to different features modulates activity in distinct regions of extrastriate cortex that appear to be specialized for processing the selected feature. The disjoint pattern of activations in extravisual brain regions during selective- and divided-attention conditions also suggests that preceptual judgements involve different neural systems, depending on attentional strategies.
Similar articles
- Selective attention modulates extrastriate visual regions in humans during visual feature discrimination and recognition.
Corbetta M, Miezin FM, Shulman GL, Petersen SE. Corbetta M, et al. Ciba Found Symp. 1991;163:165-75; discussion 175-80. doi: 10.1002/9780470514184.ch10. Ciba Found Symp. 1991. PMID: 1815890 Review. - Attentional effects in the visual pathways: a whole-brain PET study.
Bundesen C, Larsen A, Kyllingsbaek S, Paulson OB, Law I. Bundesen C, et al. Exp Brain Res. 2002 Dec;147(3):394-406. doi: 10.1007/s00221-002-1243-1. Epub 2002 Oct 12. Exp Brain Res. 2002. PMID: 12428147 - Attentional modulation of neural processing of shape, color, and velocity in humans.
Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE. Corbetta M, et al. Science. 1990 Jun 22;248(4962):1556-9. doi: 10.1126/science.2360050. Science. 1990. PMID: 2360050 - Color discrimination involves ventral and dorsal stream visual areas.
Claeys KG, Dupont P, Cornette L, Sunaert S, Van Hecke P, De Schutter E, Orban GA. Claeys KG, et al. Cereb Cortex. 2004 Jul;14(7):803-22. doi: 10.1093/cercor/bhh040. Epub 2004 Mar 28. Cereb Cortex. 2004. PMID: 15054055 Clinical Trial. - Behavioral cartography of visual functions in cat parietal cortex: areal and laminar dissociations.
Lomber SG. Lomber SG. Prog Brain Res. 2001;134:265-84. doi: 10.1016/s0079-6123(01)34018-9. Prog Brain Res. 2001. PMID: 11702548 Review.
Cited by
- Attentional templates for target features versus locations.
Jimenez M, Wang Z, Grubert A. Jimenez M, et al. Sci Rep. 2024 Sep 27;14(1):22306. doi: 10.1038/s41598-024-73656-6. Sci Rep. 2024. PMID: 39333717 Free PMC article. - Acute aerobic exercise benefits allocation of neural resources related to selective attention.
Ligeza TS, Vens MJ, Bluemer T, Junghofer M. Ligeza TS, et al. Sci Rep. 2023 May 27;13(1):8624. doi: 10.1038/s41598-023-35534-5. Sci Rep. 2023. PMID: 37244926 Free PMC article. - Experimental environment improves the reliability of short-latency afferent inhibition.
Ramdeo KR, Rehsi RS, Foglia SD, Turco CV, Toepp SL, Nelson AJ. Ramdeo KR, et al. PLoS One. 2023 Feb 22;18(2):e0281867. doi: 10.1371/journal.pone.0281867. eCollection 2023. PLoS One. 2023. PMID: 36812217 Free PMC article. - When laughter arrests speech: fMRI-based evidence.
Westermann B, Lotze M, Varra L, Versteeg N, Domin M, Nicolet L, Obrist M, Klepzig K, Marbot L, Lämmler L, Fiedler K, Wattendorf E. Westermann B, et al. Philos Trans R Soc Lond B Biol Sci. 2022 Nov 7;377(1863):20210182. doi: 10.1098/rstb.2021.0182. Epub 2022 Sep 21. Philos Trans R Soc Lond B Biol Sci. 2022. PMID: 36126674 Free PMC article. - A Midbrain Inspired Recurrent Neural Network Model for Robust Change Detection.
Sawant Y, Kundu JN, Radhakrishnan VB, Sridharan D. Sawant Y, et al. J Neurosci. 2022 Nov 2;42(44):8262-8283. doi: 10.1523/JNEUROSCI.0164-22.2022. Epub 2022 Sep 19. J Neurosci. 2022. PMID: 36123120 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources