Density functional theory study on a missing piece in understanding of heme chemistry: the reaction mechanism for indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase - PubMed (original) (raw)
. 2008 Sep 17;130(37):12299-309.
doi: 10.1021/ja803107w. Epub 2008 Aug 20.
Affiliations
- PMID: 18712870
- DOI: 10.1021/ja803107w
Density functional theory study on a missing piece in understanding of heme chemistry: the reaction mechanism for indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase
Lung Wa Chung et al. J Am Chem Soc. 2008.
Abstract
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are heme-containing dioxygenases and catalyze oxidative cleavage of the pyrrole ring of L-tryptophan. On the basis of three recent crystal structures of these heme-containing dioxygenases, two new mechanistic pathways were proposed by several groups. Both pathways start with electrophilic addition of the Fe(II)-bound dioxygen concerted with proton transfer (oxygen ene-type reaction), followed by either formation of a dioxetane intermediate or Criegee-type rearrangement. However, density functional theory (DFT) calculations do not support the proposed concerted oxygen ene-type and Criegee-type rearrangement pathways. On the basis of DFT calculations, we propose a new mechanism for dioxygen activation in these heme systems. The mechanism involves (a) direct electrophilic addition of the Fe(II)-bound oxygen to the C2 or C3 position of the indole in a closed-shell singlet state or (b) direct radical addition of the Fe(III)-superoxide to the C2 position of the indole in a triplet (or open-shell singlet) state. Then, a radical-recombination or nearly barrierless charge-recombination step from the resultant diradical or zwitterionic intermediates, respectively, proceeds to afford metastable dioxetane intermediates, followed by ring-opening of the dioxetanes. Alternatively, homolytic O-O bond cleavage from the diradical intermediate followed by oxo attack and facile C2-C3 bond cleavage could compete with the dioxetane formation pathway. Effects of ionization of the imidazole and negatively charged oxyporphyrin complex on the key dioxygen activation process are also studied.
Similar articles
- ONIOM study on a missing piece in our understanding of heme chemistry: bacterial tryptophan 2,3-dioxygenase with dual oxidants.
Chung LW, Li X, Sugimoto H, Shiro Y, Morokuma K. Chung LW, et al. J Am Chem Soc. 2010 Sep 1;132(34):11993-2005. doi: 10.1021/ja103530v. J Am Chem Soc. 2010. PMID: 20698527 - Human tryptophan dioxygenase: a comparison to indoleamine 2,3-dioxygenase.
Batabyal D, Yeh SR. Batabyal D, et al. J Am Chem Soc. 2007 Dec 19;129(50):15690-701. doi: 10.1021/ja076186k. Epub 2007 Nov 21. J Am Chem Soc. 2007. PMID: 18027945 - Reassessment of the reaction mechanism in the heme dioxygenases.
Chauhan N, Thackray SJ, Rafice SA, Eaton G, Lee M, Efimov I, Basran J, Jenkins PR, Mowat CG, Chapman SK, Raven EL. Chauhan N, et al. J Am Chem Soc. 2009 Apr 1;131(12):4186-7. doi: 10.1021/ja808326g. J Am Chem Soc. 2009. PMID: 19275153 - Oxidation of L-tryptophan in biology: a comparison between tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase.
Rafice SA, Chauhan N, Efimov I, Basran J, Raven EL. Rafice SA, et al. Biochem Soc Trans. 2009 Apr;37(Pt 2):408-12. doi: 10.1042/BST0370408. Biochem Soc Trans. 2009. PMID: 19290871 Review. - QM/MM methods: looking inside heme proteins biochemistry.
Guallar V, Wallrapp FH. Guallar V, et al. Biophys Chem. 2010 Jun;149(1-2):1-11. doi: 10.1016/j.bpc.2010.03.010. Epub 2010 Mar 20. Biophys Chem. 2010. PMID: 20400222 Review.
Cited by
- Exploring a repurposed candidate with dual hIDO1/hTDO2 inhibitory potential for anticancer efficacy identified through pharmacophore-based virtual screening and in vitro evaluation.
Aboomar NM, Essam O, Hassan A, Bassiouny AR, Arafa RK. Aboomar NM, et al. Sci Rep. 2024 Apr 24;14(1):9386. doi: 10.1038/s41598-024-59353-4. Sci Rep. 2024. PMID: 38653790 Free PMC article. - Design, synthesis and evaluation of tryptophan analogues as tool compounds to study IDO1 activity.
Cundy NJ, Hare RK, Tang T, Leach AG, Jowitt TA, Qureshi O, Gordon J, Barnes NM, Brady CA, Raven EL, Grainger RS, Butterworth S. Cundy NJ, et al. RSC Chem Biol. 2021 Sep 13;2(6):1651-1660. doi: 10.1039/d0cb00209g. eCollection 2021 Dec 2. RSC Chem Biol. 2021. PMID: 34977580 Free PMC article. - One Key and Multiple Locks: Substrate Binding in Structures of Tryptophan Dioxygenases and Hydroxylases.
Mammoli A, Riccio A, Bianconi E, Coletti A, Camaioni E, Macchiarulo A. Mammoli A, et al. ChemMedChem. 2021 Sep 16;16(18):2732-2743. doi: 10.1002/cmdc.202100312. Epub 2021 Jul 16. ChemMedChem. 2021. PMID: 34137184 Free PMC article. Review. - Kinetic and Spectroscopic Characterization of the Catalytic Ternary Complex of Tryptophan 2,3-Dioxygenase.
Geng J, Weitz AC, Dornevil K, Hendrich MP, Liu A. Geng J, et al. Biochemistry. 2020 Aug 4;59(30):2813-2822. doi: 10.1021/acs.biochem.0c00179. Epub 2020 Jul 23. Biochemistry. 2020. PMID: 32659080 Free PMC article. - UV Resonance Raman Characterization of a Substrate Bound to Human Indoleamine 2,3-Dioxygenase 1.
Yanagisawa S, Kayama K, Hara M, Sugimoto H, Shiro Y, Ogura T. Yanagisawa S, et al. Biophys J. 2019 Aug 20;117(4):706-716. doi: 10.1016/j.bpj.2019.07.017. Epub 2019 Jul 19. Biophys J. 2019. PMID: 31405517 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous