Towards a cyberinfrastructure for the biological sciences: progress, visions and challenges - PubMed (original) (raw)
Review
doi: 10.1038/nrg2414.
Affiliations
- PMID: 18714290
- DOI: 10.1038/nrg2414
Review
Towards a cyberinfrastructure for the biological sciences: progress, visions and challenges
Lincoln D Stein. Nat Rev Genet. 2008 Sep.
Abstract
Biology is an information-driven science. Large-scale data sets from genomics, physiology, population genetics and imaging are driving research at a dizzying rate. Simultaneously, interdisciplinary collaborations among experimental biologists, theorists, statisticians and computer scientists have become the key to making effective use of these data sets. However, too many biologists have trouble accessing and using these electronic data sets and tools effectively. A 'cyberinfrastructure' is a combination of databases, network protocols and computational services that brings people, information and computational tools together to perform science in this information-driven world. This article reviews the components of a biological cyberinfrastructure, discusses current and pending implementations, and notes the many challenges that lie ahead.
Similar articles
- Management of information in distributed biomedical collaboratories.
Keator DB. Keator DB. Methods Mol Biol. 2009;569:1-23. doi: 10.1007/978-1-59745-524-4_1. Methods Mol Biol. 2009. PMID: 19623483 - Current trends in antimicrobial agent research: chemo- and bioinformatics approaches.
Hammami R, Fliss I. Hammami R, et al. Drug Discov Today. 2010 Jul;15(13-14):540-6. doi: 10.1016/j.drudis.2010.05.002. Epub 2010 May 26. Drug Discov Today. 2010. PMID: 20546918 Review. - Designing highly flexible and usable cyberinfrastructures for convergence.
Herr BW, Huang W, Penumarthy S, Börner K. Herr BW, et al. Ann N Y Acad Sci. 2006 Dec;1093:161-79. doi: 10.1196/annals.1382.013. Ann N Y Acad Sci. 2006. PMID: 17312258 Review. - E-neuroscience: challenges and triumphs in integrating distributed data from molecules to brains.
Martone ME, Gupta A, Ellisman MH. Martone ME, et al. Nat Neurosci. 2004 May;7(5):467-72. doi: 10.1038/nn1229. Nat Neurosci. 2004. PMID: 15114360 - System biology of gene regulation.
Baitaluk M. Baitaluk M. Methods Mol Biol. 2009;569:55-87. doi: 10.1007/978-1-59745-524-4_4. Methods Mol Biol. 2009. PMID: 19623486
Cited by
- XGAP: a uniform and extensible data model and software platform for genotype and phenotype experiments.
Swertz MA, Velde KJ, Tesson BM, Scheltema RA, Arends D, Vera G, Alberts R, Dijkstra M, Schofield P, Schughart K, Hancock JM, Smedley D, Wolstencroft K, Goble C, de Brock EO, Jones AR, Parkinson HE; Coordination of Mouse Informatics Resources (CASIMIR); Genotype-To-Phenotype (GEN2PHEN) Consortiums; Jansen RC. Swertz MA, et al. Genome Biol. 2010;11(3):R27. doi: 10.1186/gb-2010-11-3-r27. Epub 2010 Mar 9. Genome Biol. 2010. PMID: 20214801 Free PMC article. - Metadata based management and sharing of distributed biomedical data.
Wang F, Vergara-Niedermayr C, Liu P. Wang F, et al. Int J Metadata Semant Ontol. 2014;9(1):42-57. doi: 10.1504/IJMSO.2014.059126. Int J Metadata Semant Ontol. 2014. PMID: 24834105 Free PMC article. - What Difference Does Quantity Make? On the Epistemology of Big Data in Biology.
Leonelli S. Leonelli S. Big Data Soc. 2014 Jun 1;1(1):10.1177/2053951714534395. doi: 10.1177/2053951714534395. Big Data Soc. 2014. PMID: 25729586 Free PMC article. - Computational tools for prioritizing candidate genes: boosting disease gene discovery.
Moreau Y, Tranchevent LC. Moreau Y, et al. Nat Rev Genet. 2012 Jul 3;13(8):523-36. doi: 10.1038/nrg3253. Nat Rev Genet. 2012. PMID: 22751426 Review. - Applying mass spectrometry-based proteomics to genetics, genomics and network biology.
Gstaiger M, Aebersold R. Gstaiger M, et al. Nat Rev Genet. 2009 Sep;10(9):617-27. doi: 10.1038/nrg2633. Nat Rev Genet. 2009. PMID: 19687803 Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources