Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? - PubMed (original) (raw)
Review
Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease?
Helga E de Vries et al. Free Radic Biol Med. 2008.
Abstract
Neurodegenerative diseases share various pathological features, such as accumulation of aberrant protein aggregates, microglial activation, and mitochondrial dysfunction. These pathological processes are associated with generation of reactive oxygen species (ROS), which cause oxidative stress and subsequent damage to essential molecules, such as lipids, proteins, and DNA. Hence, enhanced ROS production and oxidative injury play a cardinal role in the onset and progression of neurodegenerative disorders. To maintain a proper redox balance, the central nervous system is endowed with an antioxidant defense mechanism consisting of endogenous antioxidant enzymes. Expression of most antioxidant enzymes is tightly controlled by the antioxidant response element (ARE) and is activated by nuclear factor E2-related factor 2 (Nrf2). In past years reports have highlighted the protective effects of Nrf2 activation in reducing oxidative stress in both in vitro and in vivo models of neurodegenerative disorders. Here we provide an overview of the involvement of ROS-induced oxidative damage in Alzheimer's disease, Parkinson's disease, and Huntington's disease and we discuss the potential therapeutic effects of antioxidant enzymes and compounds that activate the Nrf2-ARE pathway.
Similar articles
- Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
Calabrese V, Lodi R, Tonon C, D'Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AM, Butterfield DA. Calabrese V, et al. J Neurol Sci. 2005 Jun 15;233(1-2):145-62. doi: 10.1016/j.jns.2005.03.012. J Neurol Sci. 2005. PMID: 15896810 Review. - Antioxidative defense mechanisms controlled by Nrf2: state-of-the-art and clinical perspectives in neurodegenerative diseases.
Lim JL, Wilhelmus MM, de Vries HE, Drukarch B, Hoozemans JJ, van Horssen J. Lim JL, et al. Arch Toxicol. 2014 Oct;88(10):1773-86. doi: 10.1007/s00204-014-1338-z. Epub 2014 Aug 28. Arch Toxicol. 2014. PMID: 25164826 Review. - Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology.
Schreibelt G, van Horssen J, van Rossum S, Dijkstra CD, Drukarch B, de Vries HE. Schreibelt G, et al. Brain Res Rev. 2007 Dec;56(2):322-30. doi: 10.1016/j.brainresrev.2007.07.005. Epub 2007 Jul 27. Brain Res Rev. 2007. PMID: 17761296 Review. - Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes.
He X, Kan H, Cai L, Ma Q. He X, et al. J Mol Cell Cardiol. 2009 Jan;46(1):47-58. doi: 10.1016/j.yjmcc.2008.10.007. Epub 2008 Nov 1. J Mol Cell Cardiol. 2009. PMID: 19007787 - Heat stress activates interleukin-8 and the antioxidant system via Nrf2 pathways in human dental pulp cells.
Chang SW, Lee SI, Bae WJ, Min KS, Shin ES, Oh GS, Pae HO, Kim EC. Chang SW, et al. J Endod. 2009 Sep;35(9):1222-8. doi: 10.1016/j.joen.2009.06.005. J Endod. 2009. PMID: 19720220
Cited by
- Discovery and Optimization of a Series of Vinyl Sulfoximine-Based Analogues as Potent Nrf2 Activators for the Treatment of Multiple Sclerosis.
Kim Y, Kim J, Kim B, Kim R, Kim HJ, Lee EH, Kim J, Park J, Jeong Y, Park SI, Kim H, Kang M, Lee J, Bahn YS, Choi JW, Park JH, Park KD. Kim Y, et al. J Med Chem. 2024 Oct 10;67(19):17866-17892. doi: 10.1021/acs.jmedchem.4c01907. Epub 2024 Sep 26. J Med Chem. 2024. PMID: 39323296 - Sofalcone attenuates neurodegeneration in MPTP-induced mouse model of Parkinson's disease by inhibiting oxidative stress and neuroinflammation.
Chen M, He X, Fan Y, Xia L, Dong Z. Chen M, et al. Mol Biol Rep. 2024 Aug 14;51(1):908. doi: 10.1007/s11033-024-09852-4. Mol Biol Rep. 2024. PMID: 39141244 - LncRNA H19 knockdown promotes neuropathologic and functional recovery via the Nrf2/HO-1 axis after traumatic brain injury.
Chen Q, Wu B, Shi Z, Wang Y, Yuan Y, Chen X, Wang Y, Hu J, Mao L, Gao Y, Wu G. Chen Q, et al. CNS Neurosci Ther. 2024 Jul;30(7):e14870. doi: 10.1111/cns.14870. CNS Neurosci Ther. 2024. PMID: 39049714 Free PMC article. - Protective Effects of Plant-Derived Compounds Against Traumatic Brain Injury.
Khayatan D, Razavi SM, Arab ZN, Khanahmadi M, Samanian A, Momtaz S, Sukhorukov VN, Jamialahmadi T, Abdolghaffari AH, Barreto GE, Sahebkar A. Khayatan D, et al. Mol Neurobiol. 2024 Oct;61(10):7732-7750. doi: 10.1007/s12035-024-04030-w. Epub 2024 Mar 1. Mol Neurobiol. 2024. PMID: 38427213 Free PMC article. Review. - Nasal Administration of bFGF-Loaded Nanoliposomes Attenuates Neuronal Injury and Cognitive Deficits in Mice with Vascular Dementia Induced by Repeated Cerebral Ischemia‒Reperfusion.
Zhang M, Huang SS, He WY, Cao WJ, Sun MY, Zhu NW. Zhang M, et al. Int J Nanomedicine. 2024 Feb 12;19:1431-1450. doi: 10.2147/IJN.S452045. eCollection 2024. Int J Nanomedicine. 2024. PMID: 38371455 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous