The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance - PubMed (original) (raw)
Review
The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance
Chris E Cooper et al. J Bioenerg Biomembr. 2008 Oct.
Abstract
The four gases, nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H(2)S) and hydrogen cyanide (HCN) all readily inhibit oxygen consumption by mitochondrial cytochrome oxidase. This inhibition is responsible for much of their toxicity when they are applied externally to the body. However, recently these gases have all been implicated, to greater or lesser extents, in normal cellular signalling events. In this review we analyse the chemistry of this inhibition, comparing and contrasting mechanism and discussing physiological consequences. The inhibition by NO and CO is dependent on oxygen concentration, but that of HCN and H(2)S is not. NO and H(2)S are readily metabolised by oxidative processes within cytochrome oxidase. In these cases the enzyme may act as a physiological detoxifier of these gases. CO oxidation is much slower and unlikely to be as physiologically important. The evidence for normal physiological levels of these gases interacting with cytochrome oxidase is equivocal, in part because there is little robust data about their steady state concentrations. A reasonable case can be made for NO, and perhaps CO and H(2)S, inhibiting cytochrome oxidase in vivo, but endogenous levels of HCN seem unlikely to be high enough.
Similar articles
- Gases in the mitochondria.
Pun PB, Lu J, Kan EM, Moochhala S. Pun PB, et al. Mitochondrion. 2010 Mar;10(2):83-93. doi: 10.1016/j.mito.2009.12.142. Epub 2009 Dec 22. Mitochondrion. 2010. PMID: 20005988 Review. - Applying gases for microcirculatory and cellular oxygenation in sepsis: effects of nitric oxide, carbon monoxide, and hydrogen sulfide.
Baumgart K, Radermacher P, Wagner F. Baumgart K, et al. Curr Opin Anaesthesiol. 2009 Apr;22(2):168-76. doi: 10.1097/ACO.0b013e328328d22f. Curr Opin Anaesthesiol. 2009. PMID: 19390245 Review. - Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine β-synthase.
Vicente JB, Malagrinò F, Arese M, Forte E, Sarti P, Giuffrè A. Vicente JB, et al. Biochim Biophys Acta. 2016 Aug;1857(8):1127-1138. doi: 10.1016/j.bbabio.2016.03.030. Epub 2016 Mar 31. Biochim Biophys Acta. 2016. PMID: 27039165 Review. - Sulfide inhibition of and metabolism by cytochrome c oxidase.
Nicholls P, Marshall DC, Cooper CE, Wilson MT. Nicholls P, et al. Biochem Soc Trans. 2013 Oct;41(5):1312-6. doi: 10.1042/BST20130070. Biochem Soc Trans. 2013. PMID: 24059525 - The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase.
Petersen LC. Petersen LC. Biochim Biophys Acta. 1977 May 11;460(2):299-307. doi: 10.1016/0005-2728(77)90216-x. Biochim Biophys Acta. 1977. PMID: 192290
Cited by
- A Review of Recent Advances in Chromatographic Quantification Methods for Cyanogenic Glycosides.
Zhao Y, Wen S, Wang Y, Zhang W, Xu X, Mou Y. Zhao Y, et al. Molecules. 2024 Oct 11;29(20):4801. doi: 10.3390/molecules29204801. Molecules. 2024. PMID: 39459170 Free PMC article. Review. - Role of hydrogen sulfide in health and disease.
Jin YQ, Yuan H, Liu YF, Zhu YW, Wang Y, Liang XY, Gao W, Ren ZG, Ji XY, Wu DD. Jin YQ, et al. MedComm (2020). 2024 Aug 16;5(9):e661. doi: 10.1002/mco2.661. eCollection 2024 Sep. MedComm (2020). 2024. PMID: 39156767 Free PMC article. Review. - Lactoperoxidase catalytically oxidize hydrogen sulfide via intermediate formation of sulfheme derivatives.
Ríos-González BB, Domán A, Ditrói T, Garai D, Crespo LD, Gerfen GJ, Furtmüller PG, Nagy P, López-Garriga J. Ríos-González BB, et al. Redox Biochem Chem. 2024 Jun;8:100021. doi: 10.1016/j.rbc.2024.100021. Epub 2024 Apr 4. Redox Biochem Chem. 2024. PMID: 38993681 Free PMC article. - Hydrogen sulfide maintains mitochondrial homeostasis and regulates ganoderic acids biosynthesis by SQR under heat stress in Ganoderma lucidum.
Shangguan J, Wu T, Tian L, Liu Y, Zhu L, Liu R, Zhu J, Shi L, Zhao M, Ren A. Shangguan J, et al. Redox Biol. 2024 Aug;74:103227. doi: 10.1016/j.redox.2024.103227. Epub 2024 Jun 6. Redox Biol. 2024. PMID: 38865903 Free PMC article. - Carbon Monoxide as a Potential Therapeutic Agent: A Molecular Analysis of Its Safety Profiles.
Bansal S, Liu D, Mao Q, Bauer N, Wang B. Bansal S, et al. J Med Chem. 2024 Jun 27;67(12):9789-9815. doi: 10.1021/acs.jmedchem.4c00823. Epub 2024 Jun 12. J Med Chem. 2024. PMID: 38864348 Free PMC article. Review.
References
- Neurosci Res. 2004 May;49(1):13-8 - PubMed
- Biochim Biophys Acta. 1977 May 11;460(2):299-307 - PubMed
- J Biol Chem. 1948 Feb;172(2):599-608 - PubMed
- Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):867-76 - PubMed
- Biochemistry. 1988 Jul 12;27(14):5383-8 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources