On the mechanism of organelle degradation in the vertebrate lens - PubMed (original) (raw)
Review
On the mechanism of organelle degradation in the vertebrate lens
Steven Bassnett. Exp Eye Res. 2009 Feb.
Abstract
The programmed elimination of cytoplasmic organelles occurs during terminal differentiation of erythrocytes, keratinocytes and lens fiber cells. In each case, the process is relatively well understood phenomenologically, but the underlying molecular mechanisms have been surprisingly slow to emerge. This brief review considers the particular case of the lens where, in addition to their specialized physiological roles, organelles represent potential sources of light scattering. The article describes how the elimination of organelles from lens cells located on the visual axis contributes to the transparency of lens tissue. Classic anatomical studies of lens organelle degradation are discussed, along with more contemporary work utilizing confocal microscopy and other imaging modalities. Finally, recent data on the biochemistry of organelle degradation are reviewed. Several review articles on lens organelle degradation are available [Wride, M.A., 1996. Cellular and molecular features of lens differentiation: a review of recent advances. Differentiation 61, 77-93; Wride, M.A., 2000. Minireview: apoptosis as seen through a lens. Apoptosis 5, 203-209; Bassnett, S., 2002. Lens organelle degradation. Exp. Eye Res. 74, 1-6; Dahm, R., 2004. Dying to see. Sci. Am. 291, 82-89] and readers are directed to these for a comprehensive discussion of the earlier literature on this topic.
Figures
Figure 1
Organelle degradation in differentiating lens fiber cells.
Similar articles
- Autophagy and mitophagy participate in ocular lens organelle degradation.
Costello MJ, Brennan LA, Basu S, Chauss D, Mohamed A, Gilliland KO, Johnsen S, Menko S, Kantorow M. Costello MJ, et al. Exp Eye Res. 2013 Nov;116:141-50. doi: 10.1016/j.exer.2013.08.017. Epub 2013 Sep 4. Exp Eye Res. 2013. PMID: 24012988 Free PMC article. - Organelle degradation during the lens and erythroid differentiation is independent of autophagy.
Matsui M, Yamamoto A, Kuma A, Ohsumi Y, Mizushima N. Matsui M, et al. Biochem Biophys Res Commun. 2006 Jan 13;339(2):485-9. doi: 10.1016/j.bbrc.2005.11.044. Epub 2005 Nov 15. Biochem Biophys Res Commun. 2006. PMID: 16300732 - The fate of the Golgi apparatus and the endoplasmic reticulum during lens fiber cell differentiation.
Bassnett S. Bassnett S. Invest Ophthalmol Vis Sci. 1995 Aug;36(9):1793-803. Invest Ophthalmol Vis Sci. 1995. PMID: 7635654 - Autophagy in the lens.
Morishita H, Mizushima N. Morishita H, et al. Exp Eye Res. 2016 Mar;144:22-8. doi: 10.1016/j.exer.2015.08.019. Epub 2015 Aug 21. Exp Eye Res. 2016. PMID: 26302409 Review. - Minireview: apoptosis as seen through a lens.
Wride MA. Wride MA. Apoptosis. 2000 Jun;5(3):203-9. doi: 10.1023/a:1009653326511. Apoptosis. 2000. PMID: 11225840 Review.
Cited by
- Role of αA-crystallin-derived αA66-80 peptide in guinea pig lens crystallin aggregation and insolubilization.
Raju M, Mooney BP, Thakkar KM, Giblin FJ, Schey KL, Sharma KK. Raju M, et al. Exp Eye Res. 2015 Mar;132:151-60. doi: 10.1016/j.exer.2015.01.024. Epub 2015 Jan 29. Exp Eye Res. 2015. PMID: 25639202 Free PMC article. - New mutation in the mouse Xpd/Ercc2 gene leads to recessive cataracts.
Kunze S, Dalke C, Fuchs H, Klaften M, Rössler U, Hornhardt S, Gomolka M, Puk O, Sabrautzki S, Kulka U, Hrabě de Angelis M, Graw J. Kunze S, et al. PLoS One. 2015 May 7;10(5):e0125304. doi: 10.1371/journal.pone.0125304. eCollection 2015. PLoS One. 2015. PMID: 25951169 Free PMC article. - The tumor suppressor merlin is required for cell cycle exit, terminal differentiation, and cell polarity in the developing murine lens.
Wiley LA, Dattilo LK, Kang KB, Giovannini M, Beebe DC. Wiley LA, et al. Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3611-8. doi: 10.1167/iovs.09-4371. Epub 2010 Feb 24. Invest Ophthalmol Vis Sci. 2010. PMID: 20181838 Free PMC article. - Transcriptomic analysis and novel insights into lens fibre cell differentiation regulated by Gata3.
Martynova E, Zhao Y, Xie Q, Zheng D, Cvekl A. Martynova E, et al. Open Biol. 2019 Dec;9(12):190220. doi: 10.1098/rsob.190220. Epub 2019 Dec 18. Open Biol. 2019. PMID: 31847788 Free PMC article. - Protecting the Eye Lens from Oxidative Stress through Oxygen Regulation.
Subczynski WK, Pasenkiewicz-Gierula M, Widomska J. Subczynski WK, et al. Antioxidants (Basel). 2023 Sep 20;12(9):1783. doi: 10.3390/antiox12091783. Antioxidants (Basel). 2023. PMID: 37760086 Free PMC article. Review.
References
- Arnheim G. Coagulationsnekrose und Kernschwund. Virchows Arch Pathol Anat. 1890;120:367–383.
- Augusteyn RC, Jones CE, Pope JM. Age-related development of a refractive index plateau in the human lens: evidence for a distinct nucleus. Clin Exp Optom. 2008;91:296–301. - PubMed
- Bassnett S. Mitochondrial dynamics in differentiating fiber cells of the mammalian lens. Curr Eye Res. 1992;11:1227–1232. - PubMed
- Bassnett S. The fate of the Golgi apparatus and the endoplasmic reticulum during lens fiber cell differentiation. Invest Ophthalmol Vis Sci. 1995;36:1793–1803. - PubMed
- Bassnett S. Fiber cell denucleation in the primate lens. Invest Ophthalmol Vis Sci. 1997;38:1678–1687. - PubMed
Publication types
MeSH terms
Grants and funding
- P30 EY002687/EY/NEI NIH HHS/United States
- R01EY09852/EY/NEI NIH HHS/United States
- R01 EY009852/EY/NEI NIH HHS/United States
- P30 EY002687-319005/EY/NEI NIH HHS/United States
- EY02687/EY/NEI NIH HHS/United States
- R01 EY009852-17/EY/NEI NIH HHS/United States
LinkOut - more resources
Full Text Sources