Learning biological networks: from modules to dynamics - PubMed (original) (raw)
Review
Learning biological networks: from modules to dynamics
Richard Bonneau. Nat Chem Biol. 2008 Nov.
Abstract
Learning regulatory networks from genomics data is an important problem with applications spanning all of biology and biomedicine. Functional genomics projects offer a cost-effective means of greatly expanding the completeness of our regulatory models, and for some prokaryotic organisms they offer a means of learning accurate models that incorporate the majority of the genome. There are, however, several reasons to believe that regulatory network inference is beyond our current reach, such as (i) the combinatorics of the problem, (ii) factors we can't (or don't often) collect genome-wide measurements for and (iii) dynamics that elude cost-effective experimental designs. Recent works have demonstrated the ability to reconstruct large fractions of prokaryotic regulatory networks from compendiums of genomics data; they have also demonstrated that these global regulatory models can be used to predict the dynamics of the transcriptome. We review an overall strategy for the reconstruction of global networks based on these results in microbial systems.
Similar articles
- Gene regulatory network inference: data integration in dynamic models-a review.
Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R. Hecker M, et al. Biosystems. 2009 Apr;96(1):86-103. doi: 10.1016/j.biosystems.2008.12.004. Epub 2008 Dec 27. Biosystems. 2009. PMID: 19150482 Review. - Network inference by combining biologically motivated regulatory constraints with penalized regression.
Parisi F, Koeppl H, Naef F. Parisi F, et al. Ann N Y Acad Sci. 2009 Mar;1158:114-24. doi: 10.1111/j.1749-6632.2008.03751.x. Ann N Y Acad Sci. 2009. PMID: 19348637 - Global dynamics of biological systems from time-resolved omics experiments.
Grigorov MG. Grigorov MG. Bioinformatics. 2006 Jun 15;22(12):1424-30. doi: 10.1093/bioinformatics/btl119. Epub 2006 Apr 3. Bioinformatics. 2006. PMID: 16585068 - Learning global models of transcriptional regulatory networks from data.
Madar A, Bonneau R. Madar A, et al. Methods Mol Biol. 2009;541:181. doi: 10.1007/978-1-59745-243-4_9. Methods Mol Biol. 2009. PMID: 19381524 Review. - Functional ingredient production: application of global metabolic models.
Smid EJ, Molenaar D, Hugenholtz J, de Vos WM, Teusink B. Smid EJ, et al. Curr Opin Biotechnol. 2005 Apr;16(2):190-7. doi: 10.1016/j.copbio.2005.03.001. Curr Opin Biotechnol. 2005. PMID: 15831386 Review.
Cited by
- Advantages and limitations of current network inference methods.
De Smet R, Marchal K. De Smet R, et al. Nat Rev Microbiol. 2010 Oct;8(10):717-29. doi: 10.1038/nrmicro2419. Epub 2010 Aug 31. Nat Rev Microbiol. 2010. PMID: 20805835 Review. - A system biology approach highlights a hormonal enhancer effect on regulation of genes in a nitrate responsive "biomodule".
Nero D, Krouk G, Tranchina D, Coruzzi GM. Nero D, et al. BMC Syst Biol. 2009 Jun 6;3:59. doi: 10.1186/1752-0509-3-59. BMC Syst Biol. 2009. PMID: 19500399 Free PMC article. - An algebra-based method for inferring gene regulatory networks.
Vera-Licona P, Jarrah A, Garcia-Puente LD, McGee J, Laubenbacher R. Vera-Licona P, et al. BMC Syst Biol. 2014 Mar 26;8:37. doi: 10.1186/1752-0509-8-37. BMC Syst Biol. 2014. PMID: 24669835 Free PMC article. - Conserved Units of Co-Expression in Bacterial Genomes: An Evolutionary Insight into Transcriptional Regulation.
Junier I, Rivoire O. Junier I, et al. PLoS One. 2016 May 19;11(5):e0155740. doi: 10.1371/journal.pone.0155740. eCollection 2016. PLoS One. 2016. PMID: 27195891 Free PMC article. - Using topology to tame the complex biochemistry of genetic networks.
Thattai M. Thattai M. Philos Trans A Math Phys Eng Sci. 2012 Dec 31;371(1984):20110548. doi: 10.1098/rsta.2011.0548. Print 2013 Feb 13. Philos Trans A Math Phys Eng Sci. 2012. PMID: 23277605 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources