Mechanisms of pathogenicity in human MSH2 missense mutants - PubMed (original) (raw)
. 2008 Nov;29(11):1355-63.
doi: 10.1002/humu.20893.
Affiliations
- PMID: 18951462
- DOI: 10.1002/humu.20893
Mechanisms of pathogenicity in human MSH2 missense mutants
Saara Ollila et al. Hum Mutat. 2008 Nov.
Abstract
The human mismatch repair (MMR) gene MSH2 is the second most frequently mutated hereditary nonpolyposis colorectal cancer (HNPCC) susceptibility locus. Given that missense mutations account for 17% of all identified alterations in this gene, the study of their pathogenicity is of increasing importance. Previously, we showed that pathogenic MSH2 missense mutations typically impaired the repair activity of the protein. In this study, we took advantage of its crystal structure and attempted to correlate the mismatch binding and ATP-catalyzed mismatch release activities with the location of 18 nontruncating MSH2 mutations. We observed that the MMR-deficient mutations situated in the amino-terminal connector and lever domains of MSH2 (V161D, G162R, G164R, L173P, L187P, C333Y, and D603N) affected protein stability, whereas mutations in the ATPase domain (A636P, G674A, C697F, I745_I746del, and E749 K) mainly caused defects in mismatch binding or release. Of the MMR-proficient variants, four (T33P, A272 V, G322D, and V923E) showed slightly reduced mismatch binding and/or release efficiencies compared to wild-type (WT) protein, while two variants (N127S and A834 T) showed no defects in the assays. Similar to our biochemical data, the mutations that affected protein stability were associated with an absence of the protein in tumors in immunohistochemical (IHC) analyses. In contrast, the protein with the mutation E749 K, which abrogates MMR but not protein stability, is well expressed in tumors. In conclusion, pathogenic missense mutations in MSH2 may interfere with different mechanisms that tend to cluster in separate protein domains with varying effects on protein stability, which could be taken into account when interpreting IHC data.
(c) 2008 Wiley-Liss, Inc.
Similar articles
- Functional analysis of HNPCC-related missense mutations in MSH2.
Lützen A, de Wind N, Georgijevic D, Nielsen FC, Rasmussen LJ. Lützen A, et al. Mutat Res. 2008 Oct 14;645(1-2):44-55. doi: 10.1016/j.mrfmmm.2008.08.015. Epub 2008 Sep 4. Mutat Res. 2008. PMID: 18822302 - Two mismatch repair gene mutations found in a colon cancer patient--which one is pathogenic?
Kariola R, Otway R, Lönnqvist KE, Raevaara TE, Macrae F, Vos YJ, Kohonen-Corish M, Hofstra RM, Nyström-Lahti M. Kariola R, et al. Hum Genet. 2003 Feb;112(2):105-9. doi: 10.1007/s00439-002-0866-4. Epub 2002 Nov 21. Hum Genet. 2003. PMID: 12522549 - MSH2 missense mutations and HNPCC syndrome: pathogenicity assessment in a human expression system.
Belvederesi L, Bianchi F, Galizia E, Loretelli C, Bracci R, Catalani R, Amati M, Cellerino R. Belvederesi L, et al. Hum Mutat. 2008 Nov;29(11):E296-309. doi: 10.1002/humu.20875. Hum Mutat. 2008. PMID: 18781619 - Functional analysis helps to clarify the clinical importance of unclassified variants in DNA mismatch repair genes.
Ou J, Niessen RC, Lützen A, Sijmons RH, Kleibeuker JH, de Wind N, Rasmussen LJ, Hofstra RM. Ou J, et al. Hum Mutat. 2007 Nov;28(11):1047-54. doi: 10.1002/humu.20580. Hum Mutat. 2007. PMID: 17594722 Review. - Humanizing mismatch repair in yeast: towards effective identification of hereditary non-polyposis colorectal cancer alleles.
Aldred PM, Borts RH. Aldred PM, et al. Biochem Soc Trans. 2007 Dec;35(Pt 6):1525-8. doi: 10.1042/BST0351525. Biochem Soc Trans. 2007. PMID: 18031259 Review.
Cited by
- Targeted sequencing of genes associated with the mismatch repair pathway in patients with endometrial cancer.
Singh AK, Talseth-Palmer B, McPhillips M, Lavik LAS, Xavier A, Drabløs F, Sjursen W. Singh AK, et al. PLoS One. 2020 Jul 7;15(7):e0235613. doi: 10.1371/journal.pone.0235613. eCollection 2020. PLoS One. 2020. PMID: 32634176 Free PMC article. - Functional characterization of rare missense mutations in MLH1 and MSH2 identified in Danish colorectal cancer patients.
Christensen LL, Kariola R, Korhonen MK, Wikman FP, Sunde L, Gerdes AM, Okkels H, Brandt CA, Bernstein I, Hansen TV, Hagemann-Madsen R, Andersen CL, Nyström M, Ørntoft TF. Christensen LL, et al. Fam Cancer. 2009;8(4):489-500. doi: 10.1007/s10689-009-9274-4. Epub 2009 Aug 21. Fam Cancer. 2009. PMID: 19697156 - MSH2 ATPase domain mutation affects CTG*CAG repeat instability in transgenic mice.
Tomé S, Holt I, Edelmann W, Morris GE, Munnich A, Pearson CE, Gourdon G. Tomé S, et al. PLoS Genet. 2009 May;5(5):e1000482. doi: 10.1371/journal.pgen.1000482. Epub 2009 May 15. PLoS Genet. 2009. PMID: 19436705 Free PMC article. - NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair.
Bone KM, Wang P, Wu F, Wu C, Li L, Bacani JT, Andrew SE, Lai R. Bone KM, et al. Blood Cancer J. 2015 May 15;5(5):e311. doi: 10.1038/bcj.2015.35. Blood Cancer J. 2015. PMID: 25978431 Free PMC article. - Germline MLH1, MSH2 and MSH6 variants in Brazilian patients with colorectal cancer and clinical features suggestive of Lynch Syndrome.
Schneider NB, Pastor T, Paula AE, Achatz MI, Santos ÂRD, Vianna FSL, Rosset C, Pinheiro M, Ashton-Prolla P, Moreira MÂM, Palmero EI; Brazilian Lynch Syndrome Study Group. Schneider NB, et al. Cancer Med. 2018 May;7(5):2078-2088. doi: 10.1002/cam4.1316. Epub 2018 Mar 25. Cancer Med. 2018. PMID: 29575718 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases