HMDB: a knowledgebase for the human metabolome - PubMed (original) (raw)
. 2009 Jan;37(Database issue):D603-10.
doi: 10.1093/nar/gkn810. Epub 2008 Oct 25.
Craig Knox, An Chi Guo, Roman Eisner, Nelson Young, Bijaya Gautam, David D Hau, Nick Psychogios, Edison Dong, Souhaila Bouatra, Rupasri Mandal, Igor Sinelnikov, Jianguo Xia, Leslie Jia, Joseph A Cruz, Emilia Lim, Constance A Sobsey, Savita Shrivastava, Paul Huang, Philip Liu, Lydia Fang, Jun Peng, Ryan Fradette, Dean Cheng, Dan Tzur, Melisa Clements, Avalyn Lewis, Andrea De Souza, Azaret Zuniga, Margot Dawe, Yeping Xiong, Derrick Clive, Russ Greiner, Alsu Nazyrova, Rustem Shaykhutdinov, Liang Li, Hans J Vogel, Ian Forsythe
Affiliations
- PMID: 18953024
- PMCID: PMC2686599
- DOI: 10.1093/nar/gkn810
HMDB: a knowledgebase for the human metabolome
David S Wishart et al. Nucleic Acids Res. 2009 Jan.
Abstract
The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 2.0) has been significantly expanded and enhanced over the previous release (version 1.0). In particular, the number of fully annotated metabolite entries has grown from 2180 to more than 6800 (a 300% increase), while the number of metabolites with biofluid or tissue concentration data has grown by a factor of five (from 883 to 4413). Similarly, the number of purified compounds with reference to NMR, LC-MS and GC-MS spectra has more than doubled (from 380 to more than 790 compounds). In addition to this significant expansion in database size, many new database searching tools and new data content has been added or enhanced. These include better algorithms for spectral searching and matching, more powerful chemical substructure searches, faster text searching software, as well as dedicated pathway searching tools and customized, clickable metabolic maps. Changes to the user-interface have also been implemented to accommodate future expansion and to make database navigation much easier. These improvements should make the HMDB much more useful to a much wider community of users.
Figures
Figure 1.
A screenshot of the HMDB pathway image for glycolysis/gluconeogenesis as found in humans. All metabolite structures and enzyme IDs are hyperlinked to the HMDB and UniProt, respectively.
Similar articles
- HMDB 3.0--The Human Metabolome Database in 2013.
Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A. Wishart DS, et al. Nucleic Acids Res. 2013 Jan;41(Database issue):D801-7. doi: 10.1093/nar/gks1065. Epub 2012 Nov 17. Nucleic Acids Res. 2013. PMID: 23161693 Free PMC article. - HMDB 4.0: the human metabolome database for 2018.
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A. Wishart DS, et al. Nucleic Acids Res. 2018 Jan 4;46(D1):D608-D617. doi: 10.1093/nar/gkx1089. Nucleic Acids Res. 2018. PMID: 29140435 Free PMC article. - HMDB: the Human Metabolome Database.
Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L. Wishart DS, et al. Nucleic Acids Res. 2007 Jan;35(Database issue):D521-6. doi: 10.1093/nar/gkl923. Nucleic Acids Res. 2007. PMID: 17202168 Free PMC article. - Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification.
Wolahan SM, Hirt D, Glenn TC. Wolahan SM, et al. In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. Chapter 25. In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. Chapter 25. PMID: 26269925 Free Books & Documents. Review. - The role of the Human Metabolome Database in inborn errors of metabolism.
Mandal R, Chamot D, Wishart DS. Mandal R, et al. J Inherit Metab Dis. 2018 May;41(3):329-336. doi: 10.1007/s10545-018-0137-8. Epub 2018 Apr 16. J Inherit Metab Dis. 2018. PMID: 29663269 Review.
Cited by
- Integration of clinical data with a genome-scale metabolic model of the human adipocyte.
Mardinoglu A, Agren R, Kampf C, Asplund A, Nookaew I, Jacobson P, Walley AJ, Froguel P, Carlsson LM, Uhlen M, Nielsen J. Mardinoglu A, et al. Mol Syst Biol. 2013;9:649. doi: 10.1038/msb.2013.5. Mol Syst Biol. 2013. PMID: 23511207 Free PMC article. - BioMiner: Paving the Way for Personalized Medicine.
Bauer C, Stec K, Glintschert A, Gruden K, Schichor C, Or-Guil M, Selbig J, Schuchhardt J. Bauer C, et al. Cancer Inform. 2015 Apr 20;14:55-63. doi: 10.4137/CIN.S20910. eCollection 2015. Cancer Inform. 2015. PMID: 26005322 Free PMC article. - A detailed physiologically based model to simulate the pharmacokinetics and hormonal pharmacodynamics of enalapril on the circulating endocrine Renin-Angiotensin-aldosterone system.
Claassen K, Willmann S, Eissing T, Preusser T, Block M. Claassen K, et al. Front Physiol. 2013 Feb 8;4:4. doi: 10.3389/fphys.2013.00004. eCollection 2013. Front Physiol. 2013. PMID: 23404365 Free PMC article. - CcpA regulates arginine biosynthesis in Staphylococcus aureus through repression of proline catabolism.
Nuxoll AS, Halouska SM, Sadykov MR, Hanke ML, Bayles KW, Kielian T, Powers R, Fey PD. Nuxoll AS, et al. PLoS Pathog. 2012;8(11):e1003033. doi: 10.1371/journal.ppat.1003033. Epub 2012 Nov 29. PLoS Pathog. 2012. PMID: 23209408 Free PMC article. - Theoretical investigation of loratadine reactivity in order to understand its degradation properties: DFT and MD study.
Armaković S, Armaković SJ, Abramović BF. Armaković S, et al. J Mol Model. 2016 Oct;22(10):240. doi: 10.1007/s00894-016-3101-2. Epub 2016 Sep 17. J Mol Model. 2016. PMID: 27640160
References
- Wishart DS. Current progress in computational metabolomics. Brief. Bioinform. 2007;8:279–293. - PubMed
- Quackenbush J. Extracting biology from high-dimensional biological data. J. Exp. Biol. 2007;210:1507–1517. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous