MALDI sample preparation: the ultra thin layer method - PubMed (original) (raw)
MALDI sample preparation: the ultra thin layer method
David Fenyo et al. J Vis Exp. 2007.
Abstract
This video demonstrates the preparation of an ultra-thin matrix/analyte layer for analyzing peptides and proteins by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) (1, 2). The ultra-thin layer method involves the production of a substrate layer of matrix crystals (alpha-cyano-4-hydroxycinnamic acid) on the sample plate, which serves as a seeding ground for subsequent crystallization of a matrix/analyte mixture. Advantages of the ultra-thin layer method over other sample deposition approaches (e.g. dried droplet) are that it provides (i) greater tolerance to impurities such as salts and detergents, (ii) better resolution, and (iii) higher spatial uniformity. This method is especially useful for the accurate mass determination of proteins. The protocol was initially developed and optimized for the analysis of membrane proteins and used to successfully analyze ion channels, metabolite transporters, and receptors, containing between 2 and 12 transmembrane domains (2). Since the original publication, it has also shown to be equally useful for the analysis of soluble proteins. Indeed, we have used it for a large number of proteins having a wide range of properties, including those with molecular masses as high as 380 kDa (3). It is currently our method of choice for the molecular mass analysis of all proteins. The described procedure consistently produces high-quality spectra, and it is sensitive, robust, and easy to implement.
Similar articles
- Homogeneous sample preparation for automated high throughput analysis with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.
Onnerfjord P, Ekström S, Bergquist J, Nilsson J, Laurell T, Marko-Varga G. Onnerfjord P, et al. Rapid Commun Mass Spectrom. 1999;13(5):315-22. doi: 10.1002/(SICI)1097-0231(19990315)13:5<315::AID-RCM483>3.0.CO;2-C. Rapid Commun Mass Spectrom. 1999. PMID: 10209870 - Improved peptide mass fingerprinting matches via optimized sample preparation in MALDI mass spectrometry.
Padliya ND, Wood TD. Padliya ND, et al. Anal Chim Acta. 2008 Oct 3;627(1):162-8. doi: 10.1016/j.aca.2008.05.059. Epub 2008 Jun 12. Anal Chim Acta. 2008. PMID: 18790140 - Recent advances in the preparation of adsorbent layers for thin-layer chromatography combined with matrix-assisted laser desorption/ionization mass-spectrometric detection.
Kucherenko E, Kanateva A, Pirogov A, Kurganov A. Kucherenko E, et al. J Sep Sci. 2019 Jan;42(1):415-430. doi: 10.1002/jssc.201800625. Epub 2018 Sep 12. J Sep Sci. 2019. PMID: 30156034 Review.
Cited by
- Enterococcus NlpC/p60 Peptidoglycan Hydrolase SagA Localizes to Sites of Cell Division and Requires Only a Catalytic Dyad for Protease Activity.
Espinosa J, Lin TY, Estrella Y, Kim B, Molina H, Hang HC. Espinosa J, et al. Biochemistry. 2020 Nov 24;59(46):4470-4480. doi: 10.1021/acs.biochem.0c00755. Epub 2020 Nov 2. Biochemistry. 2020. PMID: 33136372 Free PMC article. - Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometric analysis of intact proteins larger than 100 kDa.
Signor L, Boeri Erba E. Signor L, et al. J Vis Exp. 2013 Sep 9;(79):50635. doi: 10.3791/50635. J Vis Exp. 2013. PMID: 24056304 Free PMC article. - c-Abl and Arg induce cathepsin-mediated lysosomal degradation of the NM23-H1 metastasis suppressor in invasive cancer.
Fiore LS, Ganguly SS, Sledziona J, Cibull ML, Wang C, Richards DL, Neltner JM, Beach C, McCorkle JR, Kaetzel DM, Plattner R. Fiore LS, et al. Oncogene. 2014 Sep 4;33(36):4508-4520. doi: 10.1038/onc.2013.399. Epub 2013 Oct 7. Oncogene. 2014. PMID: 24096484 Free PMC article. - Sensitive Versatile Fluorogenic Transmembrane Peptide Substrates for Rhomboid Intramembrane Proteases.
Tichá A, Stanchev S, Škerle J, Began J, Ingr M, Švehlová K, Polovinkin L, Růžička M, Bednárová L, Hadravová R, Poláchová E, Rampírová P, Březinová J, Kašička V, Majer P, Strisovsky K. Tichá A, et al. J Biol Chem. 2017 Feb 17;292(7):2703-2713. doi: 10.1074/jbc.M116.762849. Epub 2017 Jan 9. J Biol Chem. 2017. PMID: 28069810 Free PMC article. - Rapid Analysis of ADP-Ribosylation Dynamics and Site-Specificity Using TLC-MALDI.
Wallace SR, Chihab LY, Yamasaki M, Yoshinaga BT, Torres YM, Rideaux D, Javed Z, Turumella S, Zhang M, Lawton DR, Fuller AA, Carter-O'Connell I. Wallace SR, et al. ACS Chem Biol. 2021 Nov 19;16(11):2137-2143. doi: 10.1021/acschembio.1c00542. Epub 2021 Oct 14. ACS Chem Biol. 2021. PMID: 34647721 Free PMC article.
References
- Xiang F, Beavis RC. A Method to Increase Contaminant Tolerance in Protein Matrix-Assisted Laser Desorption Ionization by the Fabrication of Thin Protein-Doped Polycrystalline Films. Rapid Communications in Mass Spectrometry. 1994;8:199–204.
- Cadene M, Chait BT. A Robust, Detergent-Friendly Method for Mass Spectrometric Analysis of Integral Membrane Proteins. Analytical Chemistry. 2000;72:5655–5658. - PubMed
- Hook P, Mikami A, Shafer B, Chait BT, Rosenfeld SS, Vallee RB. Long-range allosteric control of cytoplasmic dynein ATPase activity by the stalk and C-terminal domains. J Biol Chem. 2005;280:33045–33054. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources