Computational atlases of severity of white matter lesions in elderly subjects with MRI - PubMed (original) (raw)
Computational atlases of severity of white matter lesions in elderly subjects with MRI
Stathis Hadjidemetriou et al. Med Image Comput Comput Assist Interv. 2008.
Abstract
MRI of cerebral white matter may show regions of signal abnormalities. These changes may be associated with hypertension, inflammation, or ischemia, as well as altered brain function. The goal of this work has been to construct computational atlases of white matter lesions that represent both their severity as well as the frequency of their occurrence in a population to achieve a better classification of white matter disease. An atlas is computed with a pipeline that uses 4T FLAIR and 4T T1-weighted (T1w) brain images of a group of subjects. The processing steps include intensity correction, lesion extraction, intra-subject FLAIR to T1w rigid registration, and seamless replacement of lesions in T1w images with synthetic white matter texture. Subsequently, the T1w images and lesion images of different subjects are registered non-rigidly to the same space. The decrease in T1w intensities is used to obtain severity information. Atlases were constructed for two groups of subjects, elderly normal controls or with mild cognitive impairment, and subjects with cerebrovascular disease. The lesion severities of the two groups have a significant statistical difference with the severity in the atlas of cerebrovascular disease being higher.
Similar articles
- White matter lesion extension to automatic brain tissue segmentation on MRI.
de Boer R, Vrooman HA, van der Lijn F, Vernooij MW, Ikram MA, van der Lugt A, Breteler MM, Niessen WJ. de Boer R, et al. Neuroimage. 2009 May 1;45(4):1151-61. doi: 10.1016/j.neuroimage.2009.01.011. Neuroimage. 2009. PMID: 19344687 - Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants.
Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Hsu JT, Miller MI, van Zijl PC, Albert M, Lyketsos CG, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Mazziotta J, Mori S. Oishi K, et al. Neuroimage. 2009 Jun;46(2):486-99. doi: 10.1016/j.neuroimage.2009.01.002. Neuroimage. 2009. PMID: 19385016 Free PMC article. - The impact of image dynamic range on texture classification of brain white matter.
Mahmoud-Ghoneim D, Alkaabi MK, de Certaines JD, Goettsche FM. Mahmoud-Ghoneim D, et al. BMC Med Imaging. 2008 Dec 23;8:18. doi: 10.1186/1471-2342-8-18. BMC Med Imaging. 2008. PMID: 19105825 Free PMC article. - Quantitative texture analysis of brain white matter lesions derived from T2-weighted MR images in MS patients with clinically isolated syndrome.
Loizou CP, Petroudi S, Seimenis I, Pantziaris M, Pattichis CS. Loizou CP, et al. J Neuroradiol. 2015 Apr;42(2):99-114. doi: 10.1016/j.neurad.2014.05.006. Epub 2014 Jun 23. J Neuroradiol. 2015. PMID: 24970463 - Current concepts of analysis of cerebral white matter hyperintensities on magnetic resonance imaging.
Yoshita M, Fletcher E, DeCarli C. Yoshita M, et al. Top Magn Reson Imaging. 2005 Dec;16(6):399-407. doi: 10.1097/01.rmr.0000245456.98029.a8. Top Magn Reson Imaging. 2005. PMID: 17088690 Free PMC article. Review.
Cited by
- The aging brain and cognition: contribution of vascular injury and aβ to mild cognitive dysfunction.
Marchant NL, Reed BR, Sanossian N, Madison CM, Kriger S, Dhada R, Mack WJ, DeCarli C, Weiner MW, Mungas DM, Chui HC, Jagust WJ. Marchant NL, et al. JAMA Neurol. 2013 Apr;70(4):488-95. doi: 10.1001/2013.jamaneurol.405. JAMA Neurol. 2013. PMID: 23400560 Free PMC article. - The role of carotid intima-media thickness in predicting longitudinal cognitive function in an older adult cohort.
Frazier DT, Seider T, Bettcher BM, Mack WJ, Jastrzab L, Chao L, Weiner MW, DeCarli C, Reed BR, Mungas D, Chui HC, Kramer JH. Frazier DT, et al. Cerebrovasc Dis. 2014;38(6):441-7. doi: 10.1159/000366469. Epub 2014 Dec 11. Cerebrovasc Dis. 2014. PMID: 25502351 Free PMC article. - Advanced BrainAGE in older adults with type 2 diabetes mellitus.
Franke K, Gaser C, Manor B, Novak V. Franke K, et al. Front Aging Neurosci. 2013 Dec 17;5:90. doi: 10.3389/fnagi.2013.00090. eCollection 2013. Front Aging Neurosci. 2013. PMID: 24381557 Free PMC article. - Associations between white matter hyperintensities and β amyloid on integrity of projection, association, and limbic fiber tracts measured with diffusion tensor MRI.
Chao LL, Decarli C, Kriger S, Truran D, Zhang Y, Laxamana J, Villeneuve S, Jagust WJ, Sanossian N, Mack WJ, Chui HC, Weiner MW. Chao LL, et al. PLoS One. 2013 Jun 6;8(6):e65175. doi: 10.1371/journal.pone.0065175. Print 2013. PLoS One. 2013. PMID: 23762308 Free PMC article.
MeSH terms
LinkOut - more resources
Other Literature Sources
Medical