Paxillin nuclear-cytoplasmic localization is regulated by phosphorylation of the LD4 motif: evidence that nuclear paxillin promotes cell proliferation - PubMed (original) (raw)
. 2009 Feb 15;418(1):173-84.
doi: 10.1042/BJ20080170.
Affiliations
- PMID: 18986306
- DOI: 10.1042/BJ20080170
Paxillin nuclear-cytoplasmic localization is regulated by phosphorylation of the LD4 motif: evidence that nuclear paxillin promotes cell proliferation
Jing-Ming Dong et al. Biochem J. 2009.
Erratum in
- Biochem J. 2009 Mar 15;418(3):717
Abstract
Paxillin, a major focal-adhesion complex component belongs to the subfamily of LIM domain proteins and participates in cell adhesion-mediated signal transduction. It is implicated in cell-motility responses upon activation of cell-surface receptors and can recruit, among others, the GIT1 [GRK (G-protein-coupled-receptor kinase)-interacting ARF (ADP-ribosylation factor) GAP (GTPase-activating protein)]-PIX [PAK (p21-activated kinase)-interacting exchange factor]-PAK1 complex. Several adhesion proteins including zyxin, Hic5 and Trip6 are also nuclear and can exert transcriptional effects. In the present study we show that endogenous paxillin shuttles between the cytoplasm and nucleus, and we have used a variety of tagged paxillin constructs to map the nuclear export signal. This region overlaps an important LD(4) motif that binds GIT1 and FAK1 (focal-adhesion kinase 1). We provide evidence that phosphorylation of Ser(272) within LD(4) blocks nuclear export, and we show that this modification also reduces GIT1, but not FAK1, binding; however, Ser(272) phosphorylation does not appear to be mediated by PAK1 as previously suggested. Expression of nuclear-localized paxillin LIM domains stimulate DNA synthesis and cell proliferation. By real-time PCR analysis we have established that overexpression of either full-length paxillin or a truncated nuclear form suppresses expression of the parental imprinted gene H19, and modulation of this locus probably affects the rate of NIH-3T3 cell proliferation.
Similar articles
- GIT1 utilizes a focal adhesion targeting-homology domain to bind paxillin.
Schmalzigaug R, Garron ML, Roseman JT, Xing Y, Davidson CE, Arold ST, Premont RT. Schmalzigaug R, et al. Cell Signal. 2007 Aug;19(8):1733-44. doi: 10.1016/j.cellsig.2007.03.010. Epub 2007 Mar 30. Cell Signal. 2007. PMID: 17467235 Free PMC article. - GIT1 paxillin-binding domain is a four-helix bundle, and it binds to both paxillin LD2 and LD4 motifs.
Zhang ZM, Simmerman JA, Guibao CD, Zheng JJ. Zhang ZM, et al. J Biol Chem. 2008 Jul 4;283(27):18685-93. doi: 10.1074/jbc.M801274200. Epub 2008 Apr 30. J Biol Chem. 2008. PMID: 18448431 Free PMC article. - Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling.
Turner CE, Brown MC, Perrotta JA, Riedy MC, Nikolopoulos SN, McDonald AR, Bagrodia S, Thomas S, Leventhal PS. Turner CE, et al. J Cell Biol. 1999 May 17;145(4):851-63. doi: 10.1083/jcb.145.4.851. J Cell Biol. 1999. PMID: 10330411 Free PMC article. - Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear.
Wang Y, Gilmore TD. Wang Y, et al. Biochim Biophys Acta. 2003 Feb 17;1593(2-3):115-20. doi: 10.1016/s0167-4889(02)00349-x. Biochim Biophys Acta. 2003. PMID: 12581855 Review. - Paxillin: a focal adhesion-associated adaptor protein.
Schaller MD. Schaller MD. Oncogene. 2001 Oct 1;20(44):6459-72. doi: 10.1038/sj.onc.1204786. Oncogene. 2001. PMID: 11607845 Review.
Cited by
- Multi-omic profiling reveals the ataxia protein sacsin is required for integrin trafficking and synaptic organization.
Romano LEL, Aw WY, Hixson KM, Novoselova TV, Havener TM, Howell S, Taylor-Blake B, Hall CL, Xing L, Beri J, Nethisinghe S, Perna L, Hatimy A, Altadonna GC, Graves LM, Herring LE, Hickey AJ, Thalassinos K, Chapple JP, Wolter JM. Romano LEL, et al. Cell Rep. 2022 Nov 1;41(5):111580. doi: 10.1016/j.celrep.2022.111580. Cell Rep. 2022. PMID: 36323248 Free PMC article. - The diversification of the LIM superclass at the base of the metazoa increased subcellular complexity and promoted multicellular specialization.
Koch BJ, Ryan JF, Baxevanis AD. Koch BJ, et al. PLoS One. 2012;7(3):e33261. doi: 10.1371/journal.pone.0033261. Epub 2012 Mar 15. PLoS One. 2012. PMID: 22438907 Free PMC article. - A Systems Biology Approach for Addressing Cisplatin Resistance in Non-Small Cell Lung Cancer.
Ramisetty S, Kulkarni P, Bhattacharya S, Nam A, Singhal SS, Guo L, Mirzapoiazova T, Mambetsariev B, Mittan S, Malhotra J, Pisick E, Subbiah S, Rajurkar S, Massarelli E, Salgia R, Mohanty A. Ramisetty S, et al. J Clin Med. 2023 Jan 11;12(2):599. doi: 10.3390/jcm12020599. J Clin Med. 2023. PMID: 36675528 Free PMC article. - Regulatory mechanism of oral mucosal rete peg formation.
Chen H, Luo T, He S, Sa G. Chen H, et al. J Mol Histol. 2021 Oct;52(5):859-868. doi: 10.1007/s10735-021-10016-y. Epub 2021 Aug 31. J Mol Histol. 2021. PMID: 34463917 Review. - Impact of ionizing radiation on cell-ECM mechanical crosstalk in breast cancer.
Mottareale R, Frascogna C, La Verde G, Arrichiello C, Muto P, Netti PA, Fusco S, Panzetta V, Pugliese M. Mottareale R, et al. Front Bioeng Biotechnol. 2024 Jun 6;12:1408789. doi: 10.3389/fbioe.2024.1408789. eCollection 2024. Front Bioeng Biotechnol. 2024. PMID: 38903185 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous