Principles of lysosomal membrane degradation: Cellular topology and biochemistry of lysosomal lipid degradation - PubMed (original) (raw)
Review
. 2009 Apr;1793(4):674-83.
doi: 10.1016/j.bbamcr.2008.09.020. Epub 2008 Nov 1.
Affiliations
- PMID: 19014978
- DOI: 10.1016/j.bbamcr.2008.09.020
Free article
Review
Principles of lysosomal membrane degradation: Cellular topology and biochemistry of lysosomal lipid degradation
Heike Schulze et al. Biochim Biophys Acta. 2009 Apr.
Free article
Abstract
Cellular membranes enter the lysosomal compartment by endocytosis, phagocytosis, or autophagy. Within the lysosomal compartment, membrane components of complex structure are degraded into their building blocks. These are able to leave the lysosome and can then be utilized for the resynthesis of complex molecules or can be further degraded. Constitutive degradation of membranes occurs on the surface of intra-endosomal and intra-lysosomal membrane structures. Many integral membrane proteins are sorted to the inner membranes of endosomes and lysosome after ubiquitinylation. In the lysosome, proteins are degraded by proteolytic enzymes, the cathepsins. Phospholipids originating from lipoproteins or cellular membranes are degraded by phospholipases. Water-soluble glycosidases sequentially cleave off the terminal carbohydrate residues of glycoproteins, glycosaminoglycans, and glycosphingolipids. For glycosphingolipids with short oligosaccharide chains, the additional presence of membrane-active lysosomal lipid-binding proteins is required. The presence of lipid-binding proteins overcomes the phase problem of water soluble enzymes and lipid substrates by transferring the substrate to the degrading enzyme or by solubilizing the internal membranes. The lipid composition of intra-lysosomal vesicles differs from that of the plasma membrane. To allow at least glycosphingolipid degradation by hydrolases and activator proteins, the cholesterol content of these intraorganellar membranes decreases during endocytosis and the concentration of bis(monoacylglycero)phosphate, a stimulator of sphingolipid degradation, increases. A considerable part of our current knowledge about mechanism and biochemistry of lysosomal lipid degradation is derived from a class of human diseases, the sphingolipidoses, which are caused by inherited defects within sphingolipid and glycosphingolipid catabolism.
Similar articles
- Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids.
Kolter T, Sandhoff K. Kolter T, et al. Annu Rev Cell Dev Biol. 2005;21:81-103. doi: 10.1146/annurev.cellbio.21.122303.120013. Annu Rev Cell Dev Biol. 2005. PMID: 16212488 Review. - Processing of sphingolipid activator proteins and the topology of lysosomal digestion.
Sandhoff K, Kolter T. Sandhoff K, et al. Acta Biochim Pol. 1998;45(2):373-84. Acta Biochim Pol. 1998. PMID: 9821868 Review. - Neuronal sphingolipidoses: Membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism.
Sandhoff K. Sandhoff K. Biochimie. 2016 Nov;130:146-151. doi: 10.1016/j.biochi.2016.05.004. Epub 2016 May 5. Biochimie. 2016. PMID: 27157270 Review. - Biosynthesis and degradation of mammalian glycosphingolipids.
Sandhoff K, Kolter T. Sandhoff K, et al. Philos Trans R Soc Lond B Biol Sci. 2003 May 29;358(1433):847-61. doi: 10.1098/rstb.2003.1265. Philos Trans R Soc Lond B Biol Sci. 2003. PMID: 12803917 Free PMC article. Review. - Lysosomal degradation of membrane lipids.
Kolter T, Sandhoff K. Kolter T, et al. FEBS Lett. 2010 May 3;584(9):1700-12. doi: 10.1016/j.febslet.2009.10.021. Epub 2009 Oct 16. FEBS Lett. 2010. PMID: 19836391 Review.
Cited by
- L-Tyrosine Confers Residualizing Properties to a d-Amino Acid-Rich Residualizing Peptide for Radioiodination of Internalizing Antibodies.
Lee FT, Burvenich IJ, Guo N, Kocovski P, Tochon-Danguy H, Ackermann U, O'Keefe GJ, Gong S, Rigopoulos A, Liu Z, Gan HK, Scott AM. Lee FT, et al. Mol Imaging. 2016 Jul 25;15:1536012116647535. doi: 10.1177/1536012116647535. Print 2016. Mol Imaging. 2016. PMID: 27457521 Free PMC article. - An introduction to sphingolipid metabolism and analysis by new technologies.
Chen Y, Liu Y, Sullards MC, Merrill AH Jr. Chen Y, et al. Neuromolecular Med. 2010 Dec;12(4):306-19. doi: 10.1007/s12017-010-8132-8. Epub 2010 Aug 3. Neuromolecular Med. 2010. PMID: 20680704 Free PMC article. Review. - Group XV phospholipase A₂, a lysosomal phospholipase A₂.
Shayman JA, Kelly R, Kollmeyer J, He Y, Abe A. Shayman JA, et al. Prog Lipid Res. 2011 Jan;50(1):1-13. doi: 10.1016/j.plipres.2010.10.006. Epub 2010 Nov 11. Prog Lipid Res. 2011. PMID: 21074554 Free PMC article. Review. - Alterations in Glycerolipid and Fatty Acid Metabolic Pathways in Alzheimer's Disease Identified by Urinary Metabolic Profiling: A Pilot Study.
Watanabe Y, Kasuga K, Tokutake T, Kitamura K, Ikeuchi T, Nakamura K. Watanabe Y, et al. Front Neurol. 2021 Oct 27;12:719159. doi: 10.3389/fneur.2021.719159. eCollection 2021. Front Neurol. 2021. PMID: 34777195 Free PMC article. - Transcriptomic profiles of Dunaliella salina in response to hypersaline stress.
He Q, Lin Y, Tan H, Zhou Y, Wen Y, Gan J, Li R, Zhang Q. He Q, et al. BMC Genomics. 2020 Feb 3;21(1):115. doi: 10.1186/s12864-020-6507-2. BMC Genomics. 2020. PMID: 32013861 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous