Widespread occurrence and lateral transfer of the cyanobactin biosynthesis gene cluster in cyanobacteria - PubMed (original) (raw)
Widespread occurrence and lateral transfer of the cyanobactin biosynthesis gene cluster in cyanobacteria
Niina Leikoski et al. Appl Environ Microbiol. 2009 Feb.
Abstract
Cyanobactins are small cyclic peptides produced by cyanobacteria. Here we demonstrate the widespread but sporadic occurrence of the cyanobactin biosynthetic pathway. We detected a cyanobactin biosynthetic gene in 48 of the 132 strains included in this study. Our results suggest that cyanobactin biosynthetic genes have a complex evolutionary history in cyanobacteria punctuated by a series of ancient horizontal gene transfer events.
Figures
FIG. 1.
Cyanobactin synthetase gene clusters in cyanobacteria. (a) The conserved cyanobactin protease genes, which can be detected using the primers designed in this work, are shaded. The peptide product of the gene cluster is presented in parentheses under the producer organism. (b) The primers cysF and cysR are aligned with cyanobactin synthetase gene sequences from seven cyanobacteria: Prochloron didemni (patA [AY986476]), Trichodesmium erythraeum IMS101 (triH [CP000393]), Lyngbya aestuarii CCY9616 (lynA [AAVU01000047]), Anabaena sp. 90 (unpublished), Nodularia spumigena CCY9414 (AAVW01000072.1), Microcystis aeruginosa NIES298 (mcaA [AM774406]), and Nostoc spongiaeforme subsp. tenue (tenA [EU290741]).
FIG. 2.
The sporadic distribution of cyanobactin synthetase genes in cyanobacteria. The phylogenetic tree is based on 71 16S rRNA gene sequences from strains analyzed in this study. The strains containing the cyanobactin synthetase genes are indicated on a gray background. The likelihood of each tree is expressed as the log likelihood (lnL). The maximum-likelihood tree (−lnL = 16083.13615) is based on 1,400 bp of the 16S rRNA gene sequence. Branch lengths are proportional to sequence change. Minimum-evolution and maximum-parsimony bootstrap values from 1,000 bootstrap replicates above 50 are given above and below the nodes. Outgroup taxa used to root the tree are not shown.
FIG. 3.
Phylogenetic incongruence between cyanobactin synthetase and 16S rRNA gene sequences. Maximum-likelihood trees are based on cyanobactin synthetase sequences and 16S rRNA gene sequences, respectively. The sequences used in the cyanobactin synthetase gene and 16S rRNA data sets were 1,300 bp and 1,400 bp, respectively. Branch lengths are proportional to sequence change. The substitution rates are in different scales in the trees. Minimum-evolution bootstrap values from 1,000 bootstrap replicates are at the nodes if the value is more than 70 and if the nodes were congruent with the nodes of the maximum-likelihood tree. Both of the trees are rooted at the midpoint.
Similar articles
- The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis.
Gu W, Dong SH, Sarkar S, Nair SK, Schmidt EW. Gu W, et al. Methods Enzymol. 2018;604:113-163. doi: 10.1016/bs.mie.2018.03.002. Epub 2018 May 4. Methods Enzymol. 2018. PMID: 29779651 Free PMC article. Review. - Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria.
Sivonen K, Leikoski N, Fewer DP, Jokela J. Sivonen K, et al. Appl Microbiol Biotechnol. 2010 May;86(5):1213-25. doi: 10.1007/s00253-010-2482-x. Epub 2010 Feb 27. Appl Microbiol Biotechnol. 2010. PMID: 20195859 Free PMC article. Review. - Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.
Leikoski N, Liu L, Jokela J, Wahlsten M, Gugger M, Calteau A, Permi P, Kerfeld CA, Sivonen K, Fewer DP. Leikoski N, et al. Chem Biol. 2013 Aug 22;20(8):1033-43. doi: 10.1016/j.chembiol.2013.06.015. Epub 2013 Aug 1. Chem Biol. 2013. PMID: 23911585 - N-terminal protease gene phylogeny reveals the potential for novel cyanobactin diversity in cyanobacteria.
Martins J, Leão PN, Ramos V, Vasconcelos V. Martins J, et al. Mar Drugs. 2013 Dec 9;11(12):4902-16. doi: 10.3390/md11124902. Mar Drugs. 2013. PMID: 24351973 Free PMC article. - Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers.
Kellmann R, Mihali TK, Neilan BA. Kellmann R, et al. J Mol Evol. 2008 Nov;67(5):526-38. doi: 10.1007/s00239-008-9169-2. Epub 2008 Oct 11. J Mol Evol. 2008. PMID: 18850059
Cited by
- A cohesive Microcoleus strain cluster causes benthic cyanotoxic blooms in rivers worldwide.
Junier P, Cailleau G, Fatton M, Udriet P, Hashmi I, Bregnard D, Corona-Ramirez A, Francesco ED, Kuhn T, Mangia N, Zhioua S, Hunkeler D, Bindschedler S, Sieber S, Gonzalez D. Junier P, et al. Water Res X. 2024 Sep 4;24:100252. doi: 10.1016/j.wroa.2024.100252. eCollection 2024 Sep 1. Water Res X. 2024. PMID: 39308956 Free PMC article. - Eighteen New Aeruginosamide Variants Produced by the Baltic Cyanobacterium Limnoraphis CCNP1324.
Cegłowska M, Szubert K, Wieczerzak E, Kosakowska A, Mazur-Marzec H. Cegłowska M, et al. Mar Drugs. 2020 Aug 27;18(9):446. doi: 10.3390/md18090446. Mar Drugs. 2020. PMID: 32867236 Free PMC article. - Recent advances in the biosynthesis of RiPPs from multicore-containing precursor peptides.
Rubin GM, Ding Y. Rubin GM, et al. J Ind Microbiol Biotechnol. 2020 Oct;47(9-10):659-674. doi: 10.1007/s10295-020-02289-1. Epub 2020 Jul 2. J Ind Microbiol Biotechnol. 2020. PMID: 32617877 Free PMC article. Review. - Metabolome Variation between Strains of Microcystis aeruginosa by Untargeted Mass Spectrometry.
Racine M, Saleem A, Pick FR. Racine M, et al. Toxins (Basel). 2019 Dec 11;11(12):723. doi: 10.3390/toxins11120723. Toxins (Basel). 2019. PMID: 31835794 Free PMC article. - The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis.
Gu W, Dong SH, Sarkar S, Nair SK, Schmidt EW. Gu W, et al. Methods Enzymol. 2018;604:113-163. doi: 10.1016/bs.mie.2018.03.002. Epub 2018 May 4. Methods Enzymol. 2018. PMID: 29779651 Free PMC article. Review.
References
- Admi, V., U. Afek, and S. Carmeli. 1996. Raocyclamides A and B, novel cyclic hexapeptides isolated from the cyanobacterium Oscillatoria raoi. J. Nat. Prod. 59:396-399.
- Banker, R., and S. Carmeli. 1998. Tenuecyclamides A-D, cyclic hexapeptides from the cyanobacterium Nostoc spongiaforme var. tenue. J. Nat. Prod. 61:1248-1251. - PubMed
- Burja, A. M., B. Banaigs, E. Abou-Mansour, J. G. Burgess, and P. C. Wright. 2001. Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347-9377.
- Chang, Z., P. Flatt, W. H. Gerwick, V.-A. Nguyen, C. Willis, and D. H. Sherman. 2002. The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene 296:235-247. - PubMed
- Chang, Z., N. Sitachitta, J. Rossi, M. A. Roberts, P. M. Flatt, J. Junyong, D. H. Sherman, and W. H. Gerwick. 2004. Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 67:1356-1367. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources