Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models - PubMed (original) (raw)
. 2009 Mar 1;18(5):824-34.
doi: 10.1093/hmg/ddn408. Epub 2008 Dec 2.
Affiliations
- PMID: 19050039
- DOI: 10.1093/hmg/ddn408
Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models
Yuko Iwata et al. Hum Mol Genet. 2009.
Abstract
Muscular dystrophy is a severe degenerative disorder of skeletal muscle characterized by progressive muscle weakness. One subgroup of this disease is caused by a defect in the gene encoding one of the components of the dystrophin-glycoprotein complex, resulting in a significant disruption of membrane integrity and/or stability and, consequently, a sustained increase in the cytosolic Ca(2+) concentration ([Ca(2+)](i)). In the present study, we demonstrate that muscular dystrophy is ameliorated in two animal models, dystrophin-deficient mdx mice and delta-sarcoglycan-deficient BIO14.6 hamsters by dominant-negative inhibition of the transient receptor potential cation channel, TRPV2, a principal candidate for Ca(2+)-entry pathways. When transgenic (Tg) mice expressing a TRPV2 mutant in muscle were crossed with mdx mice, the [Ca(2+)](i) increase in muscle fibers was reduced by dominant-negative inhibition of endogenous TRPV2. Furthermore, histological, biochemical and physiological indices characterizing dystrophic pathology, such as an increased number of central nuclei and fiber size variability/fibrosis/apoptosis, elevated serum creatine kinase levels, and reduced muscle performance, were all ameliorated in the mdx/Tg mice. Similar beneficial effects were also observed in the muscles of BIO14.6 hamsters infected with adenovirus carrying mutant TRPV2. We propose that TRPV2 is a principal Ca(2+)-entry route leading to a sustained [Ca(2+)](i) increase and muscle degeneration, and that it is a promising therapeutic target for the treatment of muscular dystrophy.
Similar articles
- A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel.
Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M. Iwata Y, et al. J Cell Biol. 2003 Jun 9;161(5):957-67. doi: 10.1083/jcb.200301101. J Cell Biol. 2003. PMID: 12796481 Free PMC article. - Protective effects of Ca2+ handling drugs against abnormal Ca2+ homeostasis and cell damage in myopathic skeletal muscle cells.
Iwata Y, Katanosaka Y, Shijun Z, Kobayashi Y, Hanada H, Shigekawa M, Wakabayashi S. Iwata Y, et al. Biochem Pharmacol. 2005 Sep 1;70(5):740-51. doi: 10.1016/j.bcp.2005.05.034. Biochem Pharmacol. 2005. PMID: 16009351 - Mechanosensitive ion channels in skeletal muscle: a link in the membrane pathology of muscular dystrophy.
Lansman JB, Franco-Obregón A. Lansman JB, et al. Clin Exp Pharmacol Physiol. 2006 Jul;33(7):649-56. doi: 10.1111/j.1440-1681.2006.04393.x. Clin Exp Pharmacol Physiol. 2006. PMID: 16789935 - Muscle damage in mdx (dystrophic) mice: role of calcium and reactive oxygen species.
Whitehead NP, Yeung EW, Allen DG. Whitehead NP, et al. Clin Exp Pharmacol Physiol. 2006 Jul;33(7):657-62. doi: 10.1111/j.1440-1681.2006.04394.x. Clin Exp Pharmacol Physiol. 2006. PMID: 16789936 Review. - TRP channels in normal and dystrophic skeletal muscle.
Gailly P. Gailly P. Curr Opin Pharmacol. 2012 Jun;12(3):326-34. doi: 10.1016/j.coph.2012.01.018. Epub 2012 Feb 18. Curr Opin Pharmacol. 2012. PMID: 22349418 Review.
Cited by
- Altered calcium pump and secondary deficiency of gamma-sarcoglycan and microspan in sarcoplasmic reticulum membranes isolated from delta-sarcoglycan knockout mice.
Solares-Pérez A, Alvarez R, Crosbie RH, Vega-Moreno J, Medina-Monares J, Estrada FJ, Ortega A, Coral-Vazquez R. Solares-Pérez A, et al. Cell Calcium. 2010 Jul;48(1):28-36. doi: 10.1016/j.ceca.2010.06.003. Epub 2010 Jul 16. Cell Calcium. 2010. PMID: 20638123 Free PMC article. - Enhanced Ca²⁺ influx from STIM1-Orai1 induces muscle pathology in mouse models of muscular dystrophy.
Goonasekera SA, Davis J, Kwong JQ, Accornero F, Wei-LaPierre L, Sargent MA, Dirksen RT, Molkentin JD. Goonasekera SA, et al. Hum Mol Genet. 2014 Jul 15;23(14):3706-15. doi: 10.1093/hmg/ddu079. Epub 2014 Feb 20. Hum Mol Genet. 2014. PMID: 24556214 Free PMC article. - The dystrophin-glycoprotein complex in the prevention of muscle damage.
Gumerson JD, Michele DE. Gumerson JD, et al. J Biomed Biotechnol. 2011;2011:210797. doi: 10.1155/2011/210797. Epub 2011 Oct 5. J Biomed Biotechnol. 2011. PMID: 22007139 Free PMC article. Review. - Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies.
Ramadasan-Nair R, Gayathri N, Mishra S, Sunitha B, Mythri RB, Nalini A, Subbannayya Y, Harsha HC, Kolthur-Seetharam U, Srinivas Bharath MM. Ramadasan-Nair R, et al. J Biol Chem. 2014 Jan 3;289(1):485-509. doi: 10.1074/jbc.M113.493270. Epub 2013 Nov 12. J Biol Chem. 2014. PMID: 24220031 Free PMC article. Clinical Trial. - Involvement of thermosensitive TRP channels in energy metabolism.
Uchida K, Dezaki K, Yoneshiro T, Watanabe T, Yamazaki J, Saito M, Yada T, Tominaga M, Iwasaki Y. Uchida K, et al. J Physiol Sci. 2017 Sep;67(5):549-560. doi: 10.1007/s12576-017-0552-x. Epub 2017 Jun 27. J Physiol Sci. 2017. PMID: 28656459 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous