Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor - PubMed (original) (raw)
Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor
Till Biskup et al. Angew Chem Int Ed Engl. 2009.
No abstract available
Figures
Figure 1
The conserved Trp triad of _Xl_Cry-DASH. (a) Three-dimensional protein structure homology model from the SWISS-MODEL repository (UniProt ID: CRYD_XENLA). (b) Sequence alignment of five members of the photolyase/cryptochrome family. The conserved Trp residues of the putative ET chain in E. coli photolyase (PHR_ECOLI), Syn. Cry-DASH (CRYD_SYNSP), _Xl_Cry-DASH (CRYD_XENLA), garden warbler Cry-1a (CRY1a_GW), and A. thaliana Cry-1 (CRY1_AT) are marked with green triangles. Columns with an alignment score >0.7 are surrounded with a blue frame and the conserved amino acids colored red on white background. If the residues are strictly conserved, they are colored white on red background. The alignment was performed with MultAlin[42] and further processed with ESPript 2.2.[43]
Figure 2
Optical absorption spectra of _Xl_Cry-DASH recorded at 273 K show the FAD cofactor in different oxidation states: FADox (solid line), FADH• (dotted line), and FADH− (dashed line). The inset shows _Xl_Cry-DASH with the FADox cofactor before illumination (solid line), and _Xl_Cry-DASH reoxidized by aerial oxygen after 12 hours of blue-light illumination (dotted line). This is to demonstrate that the protein remains intact in terms of its cofactor contents even upon intensive light illumination conditions.
Figure 3
Complete TREPR data set of _Xl_Cry-DASH measured at 274 K. To control for potential shape changes in the TREPR signal caused by gradual sample degradation, spectra were recorded from low to high magnetic field followed by detection in the opposite magnetic-field direction. Each time profile is the average of 120 acquisitions recorded with a laser pulse repetition rate of 1.25 Hz, a microwave frequency of 9.68 GHz, and a power of 2 mW at a detection bandwidth of 100 MHz. A: enhanced absorption; E: emission.
Figure 4
TREPR spectrum of WT (solid blue curve) and W324F (solid green curve) _Xl_Cry-DASH recorded 500 ns after pulsed laser excitation. Experimental parameters were as in Fig. 3. The dashed curve shows a spectral simulation of the WT protein EPR data using the following parameters: gFAD = (2.00431, 2.00360, 2.00217), gTrp = (2.00370, 2.00285, 2.00246), Ω(gFAD⋯gTrp) = (126.5°, 76.5°, 246.5°), D = −0.36 mT, E = 0, Ω(gFAD⋯D) = (0°, 109.9°, 110.5°), J = +0.24 mT.
Similar articles
- Photoreaction of plant and DASH cryptochromes probed by infrared spectroscopy: the neutral radical state of flavoproteins.
Immeln D, Pokorny R, Herman E, Moldt J, Batschauer A, Kottke T. Immeln D, et al. J Phys Chem B. 2010 Dec 30;114(51):17155-61. doi: 10.1021/jp1076388. Epub 2010 Dec 3. J Phys Chem B. 2010. PMID: 21128641 - Ultrafast dynamics of resonance energy transfer in cryptochrome.
Saxena C, Wang H, Kavakli IH, Sancar A, Zhong D. Saxena C, et al. J Am Chem Soc. 2005 Jun 8;127(22):7984-5. doi: 10.1021/ja0421607. J Am Chem Soc. 2005. PMID: 15926801 - Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states.
Paulus B, Bajzath C, Melin F, Heidinger L, Kromm V, Herkersdorf C, Benz U, Mann L, Stehle P, Hellwig P, Weber S, Schleicher E. Paulus B, et al. FEBS J. 2015 Aug;282(16):3175-89. doi: 10.1111/febs.13299. Epub 2015 Apr 30. FEBS J. 2015. PMID: 25879256 - EPR spectroscopy on flavin radicals in flavoproteins.
Nohr D, Weber S, Schleicher E. Nohr D, et al. Methods Enzymol. 2019;620:251-275. doi: 10.1016/bs.mie.2019.03.013. Epub 2019 Apr 12. Methods Enzymol. 2019. PMID: 31072489 Review. - Radicals in flavoproteins.
Schleicher E, Weber S. Schleicher E, et al. Top Curr Chem. 2012;321:41-65. doi: 10.1007/128_2011_301. Top Curr Chem. 2012. PMID: 22102219 Review.
Cited by
- Chemical magnetoreception in birds: the radical pair mechanism.
Rodgers CT, Hore PJ. Rodgers CT, et al. Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):353-60. doi: 10.1073/pnas.0711968106. Epub 2009 Jan 7. Proc Natl Acad Sci U S A. 2009. PMID: 19129499 Free PMC article. - Magnetic field effects in flavoproteins and related systems.
Evans EW, Dodson CA, Maeda K, Biskup T, Wedge CJ, Timmel CR. Evans EW, et al. Interface Focus. 2013 Oct 6;3(5):20130037. doi: 10.1098/rsfs.2013.0037. Interface Focus. 2013. PMID: 24511388 Free PMC article. Review. - Radical-pair-based magnetoreception in birds: radio-frequency experiments and the role of cryptochrome.
Nießner C, Winklhofer M. Nießner C, et al. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Jul;203(6-7):499-507. doi: 10.1007/s00359-017-1189-1. Epub 2017 Jun 13. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017. PMID: 28612234 Free PMC article. - Magnetic field effect in natural cryptochrome explored with model compound.
Paul S, Kiryutin AS, Guo J, Ivanov KL, Matysik J, Yurkovskaya AV, Wang X. Paul S, et al. Sci Rep. 2017 Sep 19;7(1):11892. doi: 10.1038/s41598-017-10356-4. Sci Rep. 2017. PMID: 28928466 Free PMC article. - How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?
Nohr D, Rodriguez R, Weber S, Schleicher E. Nohr D, et al. Front Mol Biosci. 2015 Sep 1;2:49. doi: 10.3389/fmolb.2015.00049. eCollection 2015. Front Mol Biosci. 2015. PMID: 26389123 Free PMC article. Review.
References
- Cashmore AR. Cell (Cambridge, Mass) 2003;114:537. - PubMed
- Losi A. Photochem Photobiol. 2007;83:1283. - PubMed
- Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K-i, Ishiura M, Kanehisa M, Roberts VA, Todo T, Tainer JA, Getzoff ED. Mol Cell. 2003;11:59. - PubMed
- Daiyasu H, Ishikawa T, Kuma K-i, Iwai S, Todo T, Toh H. Genes Cells. 2004;9:479. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources