Focused ion beam (FIB) combined with high resolution scanning electron microscopy: a promising tool for 3D analysis of chromosome architecture - PubMed (original) (raw)
. 2009 Feb;165(2):97-106.
doi: 10.1016/j.jsb.2008.10.002. Epub 2008 Nov 5.
Affiliations
- PMID: 19059341
- DOI: 10.1016/j.jsb.2008.10.002
Focused ion beam (FIB) combined with high resolution scanning electron microscopy: a promising tool for 3D analysis of chromosome architecture
Elizabeth Schroeder-Reiter et al. J Struct Biol. 2009 Feb.
Abstract
Focused ion beam (FIB) milling in combination with field emission scanning electron microscopy (FESEM) was applied to investigations of metaphase barley chromosomes, providing new insight into the chromatin packaging in the chromosome interior and 3D distribution of histone variants in the centromeric region. Whole mount chromosomes were sectioned with FIB with thicknesses in the range of 7-20nm, resulting in up to 2000 sections, which allow high resolution three-dimensional reconstruction. For the first time, it could be shown that the chromosome interior is characterized by a network of interconnected cavities, with openings to the chromosome surface. In combination with immunogold labeling, the centromere-correlated distribution of histone variants (phosphorylated histone H3, CENH3) could be investigated with FIB in three dimensions. Limitations of classical SEM analysis of whole mount chromosomes with back-scattered electrons requiring higher accelerating voltages, e.g. faint and blurred interior signals, could be overcome with FIB milling: from within the chromosome even very small labels in the range of 10nm could be precisely visualized. This allowed direct quantification of marker molecules in a three-dimensional context. Distribution of DNA in the chromosome interior could be directly analyzed after staining with a DNA-specific platinorganic compound Platinum Blue. Higher resolution visualization of DNA distribution could be performed by preparation of FIB lamellae with the in situ lift-out technique followed by investigation in dark field with a scanning transmission electron detector (STEM) at 30kV.
Similar articles
- Chromosome centromeres: structural and analytical investigations with high resolution scanning electron microscopy in combination with focused ion beam milling.
Schroeder-Reiter E, Wanner G. Schroeder-Reiter E, et al. Cytogenet Genome Res. 2009;124(3-4):239-50. doi: 10.1159/000218129. Epub 2009 Jun 25. Cytogenet Genome Res. 2009. PMID: 19556777 - Current SEM techniques for de- and re-construction of centromeres to determine 3D CENH3 distribution in barley mitotic chromosomes.
Schroeder-Reiter E, Sanei M, Houben A, Wanner G. Schroeder-Reiter E, et al. J Microsc. 2012 Apr;246(1):96-106. doi: 10.1111/j.1365-2818.2011.03592.x. Epub 2012 Feb 3. J Microsc. 2012. PMID: 22303860 - 3D analysis of chromosome architecture: advantages and limitations with SEM.
Wanner G, Schroeder-Reiter E, Formanek H. Wanner G, et al. Cytogenet Genome Res. 2005;109(1-3):70-8. doi: 10.1159/000082384. Cytogenet Genome Res. 2005. PMID: 15753561 - Scanning electron microscopy of chromosomes.
Wanner G, Schroeder-Reiter E. Wanner G, et al. Methods Cell Biol. 2008;88:451-74. doi: 10.1016/S0091-679X(08)00423-8. Methods Cell Biol. 2008. PMID: 18617047 Review. - Cross-sectional sample preparation by focused ion beam: a review of ion-sample interaction.
Ishitani T, Yaguchi T. Ishitani T, et al. Microsc Res Tech. 1996 Nov 1;35(4):320-33. doi: 10.1002/(SICI)1097-0029(19961101)35:4<320::AID-JEMT3>3.0.CO;2-Q. Microsc Res Tech. 1996. PMID: 8987026 Review.
Cited by
- Cryo-nanoscale chromosome imaging-future prospects.
Yusuf M, Farooq S, Robinson I, Lalani EN. Yusuf M, et al. Biophys Rev. 2020 Oct;12(5):1257-1263. doi: 10.1007/s12551-020-00757-7. Epub 2020 Oct 2. Biophys Rev. 2020. PMID: 33006727 Free PMC article. Review. - Seeing chromosome structure reveals its function.
Fukui K, Wako T. Fukui K, et al. Chromosome Res. 2021 Mar;29(1):1-3. doi: 10.1007/s10577-021-09657-2. Chromosome Res. 2021. PMID: 33713240 No abstract available. - Mitotic chromosome organization: General rules meet species-specific variability.
Beseda T, Cápal P, Kubalová I, Schubert V, Doležel J, Šimková H. Beseda T, et al. Comput Struct Biotechnol J. 2020 Feb 3;18:1311-1319. doi: 10.1016/j.csbj.2020.01.006. eCollection 2020. Comput Struct Biotechnol J. 2020. PMID: 32612754 Free PMC article. Review. - Stochastic chromatin packing of 3D mitotic chromosomes revealed by coherent X-rays.
Sung D, Lim C, Takagi M, Jung C, Lee H, Cho DH, Shin JY, Ahn K, Hwang J, Nam D, Kohmura Y, Ishikawa T, Noh DY, Imamoto N, Jeon JH, Song C. Sung D, et al. Proc Natl Acad Sci U S A. 2021 Nov 16;118(46):e2109921118. doi: 10.1073/pnas.2109921118. Proc Natl Acad Sci U S A. 2021. PMID: 34750262 Free PMC article. - Deceleration of probe beam by stage bias potential improves resolution of serial block-face scanning electron microscopic images.
Bouwer JC, Deerinck TJ, Bushong E, Astakhov V, Ramachandra R, Peltier ST, Ellisman MH. Bouwer JC, et al. Adv Struct Chem Imaging. 2017;2(1):11. doi: 10.1186/s40679-016-0025-y. Epub 2016 Sep 15. Adv Struct Chem Imaging. 2017. PMID: 27695667 Free PMC article.