Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery - PubMed (original) (raw)
. 2009 Jan 12;10(1):119-27.
doi: 10.1021/bm800985e.
Affiliations
- PMID: 19061333
- DOI: 10.1021/bm800985e
Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery
Satoru Matsumoto et al. Biomacromolecules. 2009.
Abstract
A core-shell-type polyion complex (PIC) micelle with a disulfide cross-linked core was prepared through the assembly of iminothiolane-modified poly(ethylene glycol)-block-poly(L-lysine) [PEG-b-(PLL-IM)] and siRNA at a characteristic optimum mixing ratio. The PIC micelles showed a spherical shape of approximately 60 nm in diameter with a narrow distribution. The micellar structure was maintained at physiological ionic strength but was disrupted under reductive conditions because of the cleavage of disulfide cross-links, which is desirable for siRNA release in the intracellular reductive environment. Importantly, environment-responsive PIC micelles achieved 100-fold higher siRNA transfection efficacy compared with non-cross-linked PICs prepared from PEG-b-poly(L-lysine), which were not stable at physiological ionic strength. PICs formed with PEG-b-(PLL-IM) at nonoptimum ratios did not assemble into micellar structure and did not achieve gene silencing following siRNA transfection. These findings show the feasibility of core cross-linked PIC micelles as carriers for therapeutic siRNA and show that stable micellar structure is critical for effective siRNA delivery into target cells.
Similar articles
- Effect of polymer structure on micelles formed between siRNA and cationic block copolymer comprising thiols and amidines.
Christie RJ, Miyata K, Matsumoto Y, Nomoto T, Menasco D, Lai TC, Pennisi M, Osada K, Fukushima S, Nishiyama N, Yamasaki Y, Kataoka K. Christie RJ, et al. Biomacromolecules. 2011 Sep 12;12(9):3174-85. doi: 10.1021/bm2006714. Epub 2011 Aug 24. Biomacromolecules. 2011. PMID: 21863796 - Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression.
Miyata K, Kakizawa Y, Nishiyama N, Harada A, Yamasaki Y, Koyama H, Kataoka K. Miyata K, et al. J Am Chem Soc. 2004 Mar 3;126(8):2355-61. doi: 10.1021/ja0379666. J Am Chem Soc. 2004. PMID: 14982439 - Polyion complex micelles of pDNA with acetal-poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) block copolymer as the gene carrier system: physicochemical properties of micelles relevant to gene transfection efficacy.
Wakebayashi D, Nishiyama N, Itaka K, Miyata K, Yamasaki Y, Harada A, Koyama H, Nagasaki Y, Kataoka K. Wakebayashi D, et al. Biomacromolecules. 2004 Nov-Dec;5(6):2128-36. doi: 10.1021/bm040009j. Biomacromolecules. 2004. PMID: 15530026 - Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers.
Bae Y, Kataoka K. Bae Y, et al. Adv Drug Deliv Rev. 2009 Aug 10;61(10):768-84. doi: 10.1016/j.addr.2009.04.016. Epub 2009 May 5. Adv Drug Deliv Rev. 2009. PMID: 19422866 Review. - Polyion complex micelles of poly(ethylene glycol)-b-poly(L-lysine)-gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-dextran sulfate.
Shan L. Shan L. 2011 May 31 [updated 2011 Jun 23]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. 2011 May 31 [updated 2011 Jun 23]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. PMID: 21735585 Free Books & Documents. Review.
Cited by
- Recent Advances in Cellulose-Based Hydrogels: Food Applications.
Nath PC, Debnath S, Sharma M, Sridhar K, Nayak PK, Inbaraj BS. Nath PC, et al. Foods. 2023 Jan 11;12(2):350. doi: 10.3390/foods12020350. Foods. 2023. PMID: 36673441 Free PMC article. Review. - Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells.
Kozielski KL, Tzeng SY, De Mendoza BA, Green JJ. Kozielski KL, et al. ACS Nano. 2014 Apr 22;8(4):3232-41. doi: 10.1021/nn500704t. Epub 2014 Apr 3. ACS Nano. 2014. PMID: 24673565 Free PMC article. - Reduction-triggered breakable micelles of amphiphilic polyamide amine-g-polyethylene glycol for methotrexate delivery.
Huang Y, Liu J, Cui Y, Li H, Sun Y, Fan Y, Zhang X. Huang Y, et al. Biomed Res Int. 2014;2014:904634. doi: 10.1155/2014/904634. Epub 2014 Apr 13. Biomed Res Int. 2014. PMID: 24895626 Free PMC article. - Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo.
Mangraviti A, Tzeng SY, Kozielski KL, Wang Y, Jin Y, Gullotti D, Pedone M, Buaron N, Liu A, Wilson DR, Hansen SK, Rodriguez FJ, Gao GD, DiMeco F, Brem H, Olivi A, Tyler B, Green JJ. Mangraviti A, et al. ACS Nano. 2015 Feb 24;9(2):1236-49. doi: 10.1021/nn504905q. Epub 2015 Feb 10. ACS Nano. 2015. PMID: 25643235 Free PMC article. - On Complex Coacervate Core Micelles: Structure-Function Perspectives.
Magana JR, Sproncken CCM, Voets IK. Magana JR, et al. Polymers (Basel). 2020 Aug 28;12(9):1953. doi: 10.3390/polym12091953. Polymers (Basel). 2020. PMID: 32872312 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources