A Bayesian statistics approach to multiscale coarse graining - PubMed (original) (raw)
. 2008 Dec 7;129(21):214114.
doi: 10.1063/1.3033218.
Affiliations
- PMID: 19063551
- DOI: 10.1063/1.3033218
A Bayesian statistics approach to multiscale coarse graining
Pu Liu et al. J Chem Phys. 2008.
Abstract
Coarse-grained (CG) modeling provides a promising way to investigate many important physical and biological phenomena over large spatial and temporal scales. The multiscale coarse-graining (MS-CG) method has been proven to be a thermodynamically consistent way to systematically derive a CG model from atomistic force information, as shown in a variety of systems, ranging from simple liquids to proteins embedded in lipid bilayers. In the present work, Bayes' theorem, an advanced statistical tool widely used in signal processing and pattern recognition, is adopted to further improve the MS-CG force field obtained from the CG modeling. This approach can regularize the linear equation resulting from the underlying force-matching methodology, therefore substantially improving the quality of the MS-CG force field, especially for the regions with limited sampling. Moreover, this Bayesian approach can naturally provide an error estimation for each force field parameter, from which one can know the extent the results can be trusted. The robustness and accuracy of the Bayesian MS-CG algorithm is demonstrated for three different systems, including simple liquid methanol, polyalanine peptide solvated in explicit water, and a much more complicated peptide assembly with 32 NNQQNY hexapeptides.
Similar articles
- Multiscale coarse graining of liquid-state systems.
Izvekov S, Voth GA. Izvekov S, et al. J Chem Phys. 2005 Oct 1;123(13):134105. doi: 10.1063/1.2038787. J Chem Phys. 2005. PMID: 16223273 - Multiscale coarse-graining of ionic liquids.
Wang Y, Izvekov S, Yan T, Voth GA. Wang Y, et al. J Phys Chem B. 2006 Mar 2;110(8):3564-75. doi: 10.1021/jp0548220. J Phys Chem B. 2006. PMID: 16494412 - A multiscale coarse-graining method for biomolecular systems.
Izvekov S, Voth GA. Izvekov S, et al. J Phys Chem B. 2005 Feb 24;109(7):2469-73. doi: 10.1021/jp044629q. J Phys Chem B. 2005. PMID: 16851243 - Systematic methods for structurally consistent coarse-grained models.
Noid WG. Noid WG. Methods Mol Biol. 2013;924:487-531. doi: 10.1007/978-1-62703-017-5_19. Methods Mol Biol. 2013. PMID: 23034761 Review. - Multiscale modeling of biomolecular systems: in serial and in parallel.
Ayton GS, Noid WG, Voth GA. Ayton GS, et al. Curr Opin Struct Biol. 2007 Apr;17(2):192-8. doi: 10.1016/j.sbi.2007.03.004. Epub 2007 Mar 23. Curr Opin Struct Biol. 2007. PMID: 17383173 Review.
Cited by
- Model reduction of rigid-body molecular dynamics via generalized multipole potentials.
Patrone PN, Dienstfrey A, McFadden GB. Patrone PN, et al. Phys Rev E. 2019 Dec;100(6-1):063302. doi: 10.1103/PhysRevE.100.063302. Phys Rev E. 2019. PMID: 31962507 Free PMC article. - Systematic improvement of a classical molecular model of water.
Wang LP, Head-Gordon T, Ponder JW, Ren P, Chodera JD, Eastman PK, Martinez TJ, Pande VS. Wang LP, et al. J Phys Chem B. 2013 Aug 29;117(34):9956-72. doi: 10.1021/jp403802c. Epub 2013 Aug 14. J Phys Chem B. 2013. PMID: 23750713 Free PMC article. - Multiscale coarse-graining of the protein energy landscape.
Hills RD Jr, Lu L, Voth GA. Hills RD Jr, et al. PLoS Comput Biol. 2010 Jun 24;6(6):e1000827. doi: 10.1371/journal.pcbi.1000827. PLoS Comput Biol. 2010. PMID: 20585614 Free PMC article. - Building Force Fields: An Automatic, Systematic, and Reproducible Approach.
Wang LP, Martinez TJ, Pande VS. Wang LP, et al. J Phys Chem Lett. 2014 Jun 5;5(11):1885-91. doi: 10.1021/jz500737m. Epub 2014 May 16. J Phys Chem Lett. 2014. PMID: 26273869 Free PMC article. - LASSI: A lattice model for simulating phase transitions of multivalent proteins.
Choi JM, Dar F, Pappu RV. Choi JM, et al. PLoS Comput Biol. 2019 Oct 21;15(10):e1007028. doi: 10.1371/journal.pcbi.1007028. eCollection 2019 Oct. PLoS Comput Biol. 2019. PMID: 31634364 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources