Cytoskeletal origins in sulfur-metabolizing archaebacteria - PubMed (original) (raw)
Review
Cytoskeletal origins in sulfur-metabolizing archaebacteria
D G Searcy et al. Biosystems. 1991.
Abstract
Several of the thermophilic acidopholic sulfur-metabolizing archaebacteria lack rigid cell walls. Their irregular shapes were maintained by an internal mechanism, presumably a cytoskeleton. Apparently this is an adaptation for respiration upon elemental sulfur, which requires cell contact since sulfur is insoluble in water. Also, we speculate that there could be additional functions of the cytoskeleton, such as prevention of osmotic cell lysis, thermal stabilization of enzymes, and improvements in metabolic efficiency through specific enzyme positioning. Such a well-developed cytoskeleton, evolving first in thermophilic archaebacteria, could have been a preadaptation for the evolution of eukaryotic cells.
Similar articles
- The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon.
Margulis L, Chapman M, Guerrero R, Hall J. Margulis L, et al. Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13080-5. doi: 10.1073/pnas.0604985103. Epub 2006 Aug 22. Proc Natl Acad Sci U S A. 2006. PMID: 16938841 Free PMC article. - Eukaryotic evolution: the importance of being archaebacterial.
Logsdon JM Jr. Logsdon JM Jr. Curr Biol. 2010 Dec 21;20(24):R1078-9. doi: 10.1016/j.cub.2010.11.020. Curr Biol. 2010. PMID: 21172628 - Archaebacteria and the origin of the eukaryotic cytoplasm.
Zillig W, Schnabel R, Stetter KO. Zillig W, et al. Curr Top Microbiol Immunol. 1985;114:1-18. doi: 10.1007/978-3-642-70227-3_1. Curr Top Microbiol Immunol. 1985. PMID: 3922682 Review. No abstract available. - The archaebacteria and eukaryotic origins.
Van Valen LM, Maiorana VC. Van Valen LM, et al. Nature. 1980 Sep 18;287(5779):248-50. doi: 10.1038/287248a0. Nature. 1980. PMID: 6159535 - Origins of the machinery of recombination and sex.
Cavalier-Smith T. Cavalier-Smith T. Heredity (Edinb). 2002 Feb;88(2):125-41. doi: 10.1038/sj.hdy.6800034. Heredity (Edinb). 2002. PMID: 11932771 Review.
Cited by
- Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding.
Yuan H, Xu J, van Dam EP, Giubertoni G, Rezus YLA, Hammink R, Bakker HJ, Zhan Y, Rowan AE, Xing C, Kouwer PHJ. Yuan H, et al. Macromolecules. 2017 Nov 28;50(22):9058-9065. doi: 10.1021/acs.macromol.7b01832. Epub 2017 Nov 15. Macromolecules. 2017. PMID: 29213150 Free PMC article. - Endosymbiotic theories for eukaryote origin.
Martin WF, Garg S, Zimorski V. Martin WF, et al. Philos Trans R Soc Lond B Biol Sci. 2015 Sep 26;370(1678):20140330. doi: 10.1098/rstb.2014.0330. Philos Trans R Soc Lond B Biol Sci. 2015. PMID: 26323761 Free PMC article. Review. - The archaeal legacy of eukaryotes: a phylogenomic perspective.
Guy L, Saw JH, Ettema TJ. Guy L, et al. Cold Spring Harb Perspect Biol. 2014 Jul 3;6(10):a016022. doi: 10.1101/cshperspect.a016022. Cold Spring Harb Perspect Biol. 2014. PMID: 24993577 Free PMC article. Review. - Breaking through a phylogenetic impasse: a pair of associated archaea might have played host in the endosymbiotic origin of eukaryotes.
Godde JS. Godde JS. Cell Biosci. 2012 Aug 22;2(1):29. doi: 10.1186/2045-3701-2-29. Cell Biosci. 2012. PMID: 22913376 Free PMC article. - The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon.
Margulis L, Chapman M, Guerrero R, Hall J. Margulis L, et al. Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13080-5. doi: 10.1073/pnas.0604985103. Epub 2006 Aug 22. Proc Natl Acad Sci U S A. 2006. PMID: 16938841 Free PMC article.