The zinc center influences the redox and thermodynamic properties of Escherichia coli thioredoxin 2 - PubMed (original) (raw)
. 2009 Feb 13;386(1):60-71.
doi: 10.1016/j.jmb.2008.11.046. Epub 2008 Dec 3.
Affiliations
- PMID: 19073194
- DOI: 10.1016/j.jmb.2008.11.046
The zinc center influences the redox and thermodynamic properties of Escherichia coli thioredoxin 2
Hayat El Hajjaji et al. J Mol Biol. 2009.
Abstract
Thioredoxins are small, ubiquitous redox enzymes that reduce protein disulfide bonds by using a pair of cysteine residues present in a strictly conserved WCGPC catalytic motif. The Escherichia coli cytoplasm contains two thioredoxins, Trx1 and Trx2. Trx2 is special because it is induced under oxidative stress conditions and it has an additional N-terminal zinc-binding domain. We have determined the redox potential of Trx2, the pK(a) of the active site nucleophilic cysteine, as well as the stability of the oxidized and reduced form of the protein. Trx2 is more oxidizing than Trx1 (-221 mV versus -284 mV, respectively), which is in good agreement with the decreased value of the pK(a) of the nucleophilic cysteine (5.1 versus 7.1, respectively). The difference in stability between the oxidized and reduced forms of an oxidoreductase is the driving force to reduce substrate proteins. This difference is smaller for Trx2 (DeltaDeltaG degrees(H2O)=9 kJ/mol and DeltaT(m)=7. 4 degrees C) than for Trx1 (DeltaDeltaG degrees(H2O)=15 kJ/mol and DeltaT(m)=13 degrees C). Altogether, our data indicate that Trx2 is a significantly less reducing enzyme than Trx1, which suggests that Trx2 has a distinctive function. We disrupted the zinc center by mutating the four Zn(2+)-binding cysteines to serine. This mutant has a more reducing redox potential (-254 mV) and the pK(a) of its nucleophilic cysteine shifts from 5.1 to 7.1. The removal of Zn(2+) also decreases the overall stability of the reduced and oxidized forms by 3.2 kJ/mol and 5.8 kJ/mol, respectively. In conclusion, our data show that the Zn(2+)-center of Trx2 fine-tunes the properties of this unique thioredoxin.
Similar articles
- The conserved active site proline determines the reducing power of Staphylococcus aureus thioredoxin.
Roos G, Garcia-Pino A, Van Belle K, Brosens E, Wahni K, Vandenbussche G, Wyns L, Loris R, Messens J. Roos G, et al. J Mol Biol. 2007 May 4;368(3):800-11. doi: 10.1016/j.jmb.2007.02.045. Epub 2007 Feb 22. J Mol Biol. 2007. PMID: 17368484 - Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.
Mössner E, Huber-Wunderlich M, Glockshuber R. Mössner E, et al. Protein Sci. 1998 May;7(5):1233-44. doi: 10.1002/pro.5560070519. Protein Sci. 1998. PMID: 9605329 Free PMC article. - High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study.
Stirnimann CU, Rozhkova A, Grauschopf U, Böckmann RA, Glockshuber R, Capitani G, Grütter MG. Stirnimann CU, et al. J Mol Biol. 2006 May 5;358(3):829-45. doi: 10.1016/j.jmb.2006.02.030. Epub 2006 Feb 28. J Mol Biol. 2006. PMID: 16545842 - Similarities and differences in the thioredoxin superfamily.
Carvalho AP, Fernandes PA, Ramos MJ. Carvalho AP, et al. Prog Biophys Mol Biol. 2006 Jul;91(3):229-48. doi: 10.1016/j.pbiomolbio.2005.06.012. Epub 2005 Jul 26. Prog Biophys Mol Biol. 2006. PMID: 16098567 Review. - Thioredoxin - structural and functional complexity.
Stefanková P, Kollárová M, Barák I. Stefanková P, et al. Gen Physiol Biophys. 2005 Mar;24(1):3-11. Gen Physiol Biophys. 2005. PMID: 15900083 Review.
Cited by
- Designing Flavoprotein-GFP Fusion Probes for Analyte-Specific Ratiometric Fluorescence Imaging.
Hudson DA, Caplan JL, Thorpe C. Hudson DA, et al. Biochemistry. 2018 Feb 20;57(7):1178-1189. doi: 10.1021/acs.biochem.7b01132. Epub 2018 Jan 31. Biochemistry. 2018. PMID: 29341594 Free PMC article. - Structural and functional characterization of ScsC, a periplasmic thioredoxin-like protein from Salmonella enterica serovar Typhimurium.
Shepherd M, Heras B, Achard ME, King GJ, Argente MP, Kurth F, Taylor SL, Howard MJ, King NP, Schembri MA, McEwan AG. Shepherd M, et al. Antioxid Redox Signal. 2013 Nov 1;19(13):1494-506. doi: 10.1089/ars.2012.4939. Epub 2013 Aug 9. Antioxid Redox Signal. 2013. PMID: 23642141 Free PMC article. - Coordination chemistry of bacterial metal transport and sensing.
Ma Z, Jacobsen FE, Giedroc DP. Ma Z, et al. Chem Rev. 2009 Oct;109(10):4644-81. doi: 10.1021/cr900077w. Chem Rev. 2009. PMID: 19788177 Free PMC article. Review. No abstract available. - Amyloid-like fibril formation by polyQ proteins: a critical balance between the polyQ length and the constraints imposed by the host protein.
Scarafone N, Pain C, Fratamico A, Gaspard G, Yilmaz N, Filée P, Galleni M, Matagne A, Dumoulin M. Scarafone N, et al. PLoS One. 2012;7(3):e31253. doi: 10.1371/journal.pone.0031253. Epub 2012 Mar 9. PLoS One. 2012. PMID: 22438863 Free PMC article. - Analysis and functional prediction of reactive cysteine residues.
Marino SM, Gladyshev VN. Marino SM, et al. J Biol Chem. 2012 Feb 10;287(7):4419-25. doi: 10.1074/jbc.R111.275578. Epub 2011 Dec 6. J Biol Chem. 2012. PMID: 22157013 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases