Chapter 7: Total internal reflection fluorescence microscopy - PubMed (original) (raw)
Chapter 7: Total internal reflection fluorescence microscopy
Daniel Axelrod. Methods Cell Biol. 2008.
Abstract
Total internal reflection fluorescence microscopy (TIRFM), also known as evanescent wave microscopy, is used in a wide range of applications, particularly to view single molecules attached to planar surfaces and to study the position and dynamics of molecules and organelles in living culture cells near the contact regions with the glass coverslip. TIRFM selectively illuminates fluorophores only in a very thin (less than 100 nm deep) layer near the substrate, thereby avoiding excitation of fluorophores outside this subresolution optical section. This chapter reviews the history, current applications in cell biology and biochemistry, basic optical theory, combinations with numerous other optical and spectroscopic approaches, and a range of setup methods, both commercial and custom.
Similar articles
- Cellular imaging using total internal reflection fluorescence microscopy: theory and instrumentation.
Toomre D. Toomre D. Cold Spring Harb Protoc. 2012 Apr 1;2012(4):414-24. doi: 10.1101/pdb.top068650. Cold Spring Harb Protoc. 2012. PMID: 22474668 Review. - A membrane-bound FRET-based caspase sensor for detection of apoptosis using fluorescence lifetime and total internal reflection microscopy.
Angres B, Steuer H, Weber P, Wagner M, Schneckenburger H. Angres B, et al. Cytometry A. 2009 May;75(5):420-7. doi: 10.1002/cyto.a.20698. Cytometry A. 2009. PMID: 19097170 - Generating live cell data using total internal reflection fluorescence microscopy.
Toomre D. Toomre D. Cold Spring Harb Protoc. 2012 Apr 1;2012(4):439-46. doi: 10.1101/pdb.ip068676. Cold Spring Harb Protoc. 2012. PMID: 22474670 - Overview of laser microbeam applications as related to antibody targeting.
Pine PS. Pine PS. Methods Mol Biol. 2010;588:203-17. doi: 10.1007/978-1-59745-324-0_22. Methods Mol Biol. 2010. PMID: 20012833 Review. - Alignment and calibration of total internal reflection fluorescence microscopy systems.
Toomre D. Toomre D. Cold Spring Harb Protoc. 2012 Apr 1;2012(4):504-9. doi: 10.1101/pdb.prot068668. Cold Spring Harb Protoc. 2012. PMID: 22474669
Cited by
- Single-molecule counting applied to the study of GPCR oligomerization.
Milstein JN, Nino DF, Zhou X, Gradinaru CC. Milstein JN, et al. Biophys J. 2022 Sep 6;121(17):3175-3187. doi: 10.1016/j.bpj.2022.07.034. Epub 2022 Aug 3. Biophys J. 2022. PMID: 35927960 Free PMC article. Review. - New insights into HTLV-1 particle structure, assembly, and Gag-Gag interactions in living cells.
Fogarty KH, Zhang W, Grigsby IF, Johnson JL, Chen Y, Mueller JD, Mansky LM. Fogarty KH, et al. Viruses. 2011 Jun;3(6):770-93. doi: 10.3390/v3060770. Epub 2011 Jun 14. Viruses. 2011. PMID: 21994753 Free PMC article. Review. - Polarization-controlled TIRFM with focal drift and spatial field intensity correction.
Johnson DS, Toledo-Crow R, Mattheyses AL, Simon SM. Johnson DS, et al. Biophys J. 2014 Mar 4;106(5):1008-19. doi: 10.1016/j.bpj.2013.12.043. Biophys J. 2014. PMID: 24606926 Free PMC article. - Visualizing Surface T-Cell Receptor Dynamics Four-Dimensionally Using Lattice Light-Sheet Microscopy.
Rosenberg J, Huang J. Rosenberg J, et al. J Vis Exp. 2020 Jan 30;(155):10.3791/59914. doi: 10.3791/59914. J Vis Exp. 2020. PMID: 32065118 Free PMC article. - Imaging, Tracking and Computational Analyses of Virus Entry and Egress with the Cytoskeleton.
Wang IH, Burckhardt CJ, Yakimovich A, Greber UF. Wang IH, et al. Viruses. 2018 Mar 31;10(4):166. doi: 10.3390/v10040166. Viruses. 2018. PMID: 29614729 Free PMC article. Review.