Dendritic encoding of sensory stimuli controlled by deep cortical interneurons - PubMed (original) (raw)
. 2009 Feb 26;457(7233):1137-41.
doi: 10.1038/nature07663. Epub 2009 Jan 18.
Affiliations
- PMID: 19151696
- DOI: 10.1038/nature07663
Dendritic encoding of sensory stimuli controlled by deep cortical interneurons
Masanori Murayama et al. Nature. 2009.
Abstract
The computational power of single neurons is greatly enhanced by active dendritic conductances that have a large influence on their spike activity. In cortical output neurons such as the large pyramidal cells of layer 5 (L5), activation of apical dendritic calcium channels leads to plateau potentials that increase the gain of the input/output function and switch the cell to burst-firing mode. The apical dendrites are innervated by local excitatory and inhibitory inputs as well as thalamic and corticocortical projections, which makes it a formidable task to predict how these inputs influence active dendritic properties in vivo. Here we investigate activity in populations of L5 pyramidal dendrites of the somatosensory cortex in awake and anaesthetized rats following sensory stimulation using a new fibre-optic method for recording dendritic calcium changes. We show that the strength of sensory stimulation is encoded in the combined dendritic calcium response of a local population of L5 pyramidal cells in a graded manner. The slope of the stimulus-response function was under the control of a particular subset of inhibitory neurons activated by synaptic inputs predominantly in L5. Recordings from single apical tuft dendrites in vitro showed that activity in L5 pyramidal neurons disynaptically coupled via interneurons directly blocks the initiation of dendritic calcium spikes in neighbouring pyramidal neurons. The results constitute a functional description of a cortical microcircuit in awake animals that relies on the active properties of L5 pyramidal dendrites and their very high sensitivity to inhibition. The microcircuit is organized so that local populations of apical dendrites can adaptively encode bottom-up sensory stimuli linearly across their full dynamic range.
Similar articles
- Back-propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex.
Kaiser KM, Zilberter Y, Sakmann B. Kaiser KM, et al. J Physiol. 2001 Aug 15;535(Pt 1):17-31. doi: 10.1111/j.1469-7793.2001.t01-1-00017.x. J Physiol. 2001. PMID: 11507155 Free PMC article. - Efficient Low-Pass Dendro-Somatic Coupling in the Apical Dendrite of Layer 5 Pyramidal Neurons in the Anterior Cingulate Cortex.
Marti Mengual U, Wybo WAM, Spierenburg LJE, Santello M, Senn W, Nevian T. Marti Mengual U, et al. J Neurosci. 2020 Nov 11;40(46):8799-8815. doi: 10.1523/JNEUROSCI.3028-19.2020. Epub 2020 Oct 12. J Neurosci. 2020. PMID: 33046549 Free PMC article. - Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons.
Larkum ME, Zhu JJ, Sakmann B. Larkum ME, et al. J Physiol. 2001 Jun 1;533(Pt 2):447-66. doi: 10.1111/j.1469-7793.2001.0447a.x. J Physiol. 2001. PMID: 11389204 Free PMC article. - From single cells and single columns to cortical networks: dendritic excitability, coincidence detection and synaptic transmission in brain slices and brains.
Sakmann B. Sakmann B. Exp Physiol. 2017 May 1;102(5):489-521. doi: 10.1113/EP085776. Epub 2017 Apr 21. Exp Physiol. 2017. PMID: 28139019 Free PMC article. Review. - The decade of the dendritic NMDA spike.
Antic SD, Zhou WL, Moore AR, Short SM, Ikonomu KD. Antic SD, et al. J Neurosci Res. 2010 Nov 1;88(14):2991-3001. doi: 10.1002/jnr.22444. J Neurosci Res. 2010. PMID: 20544831 Free PMC article. Review.
Cited by
- Illusions, Delusions, and Your Backwards Bayesian Brain: A Biased Visual Perspective.
Born RT, Bencomo GM. Born RT, et al. Brain Behav Evol. 2020;95(5):272-285. doi: 10.1159/000514859. Epub 2021 Mar 30. Brain Behav Evol. 2020. PMID: 33784667 Free PMC article. Review. - Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits.
Yavorska I, Wehr M. Yavorska I, et al. Front Neural Circuits. 2016 Sep 29;10:76. doi: 10.3389/fncir.2016.00076. eCollection 2016. Front Neural Circuits. 2016. PMID: 27746722 Free PMC article. Review. - Targeting prefrontal cortex GABAergic microcircuits for the treatment of alcohol use disorder.
Fish KN, Joffe ME. Fish KN, et al. Front Synaptic Neurosci. 2022 Aug 29;14:936911. doi: 10.3389/fnsyn.2022.936911. eCollection 2022. Front Synaptic Neurosci. 2022. PMID: 36105666 Free PMC article. Review. - Dendritic Mechanisms for In Vivo Neural Computations and Behavior.
Fischer L, Mojica Soto-Albors R, Tang VD, Bicknell B, Grienberger C, Francioni V, Naud R, Palmer LM, Takahashi N. Fischer L, et al. J Neurosci. 2022 Nov 9;42(45):8460-8467. doi: 10.1523/JNEUROSCI.1132-22.2022. J Neurosci. 2022. PMID: 36351832 Free PMC article. Review. - Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron.
Ramaswamy S, Markram H. Ramaswamy S, et al. Front Cell Neurosci. 2015 Jun 26;9:233. doi: 10.3389/fncel.2015.00233. eCollection 2015. Front Cell Neurosci. 2015. PMID: 26167146 Free PMC article. Review.
References
- J Physiol. 1999 Dec 1;521 Pt 2:467-82 - PubMed
- Nat Neurosci. 2007 Jun;10(6):743-53 - PubMed
- J Comp Neurol. 1990 Jan 1;291(1):43-54 - PubMed
- Proc Biol Sci. 1998 Jun 7;265(1400):1037-44 - PubMed
- Neurosci Lett. 2004 Sep 9;367(3):394-8 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources