Dendritic encoding of sensory stimuli controlled by deep cortical interneurons - PubMed (original) (raw)

. 2009 Feb 26;457(7233):1137-41.

doi: 10.1038/nature07663. Epub 2009 Jan 18.

Affiliations

Dendritic encoding of sensory stimuli controlled by deep cortical interneurons

Masanori Murayama et al. Nature. 2009.

Abstract

The computational power of single neurons is greatly enhanced by active dendritic conductances that have a large influence on their spike activity. In cortical output neurons such as the large pyramidal cells of layer 5 (L5), activation of apical dendritic calcium channels leads to plateau potentials that increase the gain of the input/output function and switch the cell to burst-firing mode. The apical dendrites are innervated by local excitatory and inhibitory inputs as well as thalamic and corticocortical projections, which makes it a formidable task to predict how these inputs influence active dendritic properties in vivo. Here we investigate activity in populations of L5 pyramidal dendrites of the somatosensory cortex in awake and anaesthetized rats following sensory stimulation using a new fibre-optic method for recording dendritic calcium changes. We show that the strength of sensory stimulation is encoded in the combined dendritic calcium response of a local population of L5 pyramidal cells in a graded manner. The slope of the stimulus-response function was under the control of a particular subset of inhibitory neurons activated by synaptic inputs predominantly in L5. Recordings from single apical tuft dendrites in vitro showed that activity in L5 pyramidal neurons disynaptically coupled via interneurons directly blocks the initiation of dendritic calcium spikes in neighbouring pyramidal neurons. The results constitute a functional description of a cortical microcircuit in awake animals that relies on the active properties of L5 pyramidal dendrites and their very high sensitivity to inhibition. The microcircuit is organized so that local populations of apical dendrites can adaptively encode bottom-up sensory stimuli linearly across their full dynamic range.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Physiol. 1999 Dec 1;521 Pt 2:467-82 - PubMed
    1. Nat Neurosci. 2007 Jun;10(6):743-53 - PubMed
    1. J Comp Neurol. 1990 Jan 1;291(1):43-54 - PubMed
    1. Proc Biol Sci. 1998 Jun 7;265(1400):1037-44 - PubMed
    1. Neurosci Lett. 2004 Sep 9;367(3):394-8 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources