Nuclear lamins and chromatin: when structure meets function - PubMed (original) (raw)
Review
Nuclear lamins and chromatin: when structure meets function
Thomas Dechat et al. Adv Enzyme Regul. 2009.
No abstract available
Figures
Figure 1
Structure of nuclear lamins. Schematic drawing of a lamin polypeptide chain depicting the α-helical central rod domain, the N-terminal globular head domain and the C-terminal globular tail domain. In addition the nuclear localization signal (NLS) and the Ig-fold are indicated.
Figure 2
Close association of heterochromatin with the nuclear lamina. Localization of lamins A/C (C, G), histone H3 trimethylated (H3me3) on lysine 9 (H3K9me3) (B), or on lysine 27 (H3K27me3) (F) in human foreskin fibroblasts (A–D) and human dermal fibroblasts from a female donor (E–H). DNA is stained with Hoechst dye (blue; A, E). Note that long stretches of heterochromatin, as revealed by Hoechst staining and by staining for H3K9me3, a histone modification associated mainly with constitutive pericentric heterochromatin, are in close proximity to and partially overlapping with peripheral lamins A/C in human foreskin fibroblasts (A–D). In addition, the Xi, which represents a large heterochromatic mass that can be visualized by staining with Hoechst and H3K27me3 (see arrowheads), is often found associated with lamins at the nuclear lamina (E–H). Scale bars, 10 μM.
Figure 3
Lamin B3 is closely associated with PCNA and chromatin in in vitro assembled nuclei. Localization of Xenopus lamin B3 (B, b; green) and PCNA (C, c; red) in a nucleus assembled in a Xenopus egg interphase extract for 130 min (A–D). DNA is stained with Hoechst dye (A, a; blue). The area in the box in D is enlarged (3.5×) to show the partial overlap between DNA, lamin B3 and PCNA (a–d). Brightness and contrast are enhanced in b compared to B for better visualization of the internal lamin B3 structures. Scale bar, 5 μM.
Similar articles
- Nuclear lamins: key regulators of nuclear structure and activities.
Prokocimer M, Davidovich M, Nissim-Rafinia M, Wiesel-Motiuk N, Bar DZ, Barkan R, Meshorer E, Gruenbaum Y. Prokocimer M, et al. J Cell Mol Med. 2009 Jun;13(6):1059-85. doi: 10.1111/j.1582-4934.2008.00676.x. Epub 2009 Feb 4. J Cell Mol Med. 2009. PMID: 19210577 Free PMC article. Review. - Lamins: the structure and protein complexes.
Gruenbaum Y, Medalia O. Gruenbaum Y, et al. Curr Opin Cell Biol. 2015 Feb;32:7-12. doi: 10.1016/j.ceb.2014.09.009. Epub 2014 Oct 13. Curr Opin Cell Biol. 2015. PMID: 25460776 Review. - The nuclear lamins and the nuclear envelope.
Rzepecki R. Rzepecki R. Cell Mol Biol Lett. 2002;7(4):1019-35. Cell Mol Biol Lett. 2002. PMID: 12511969 Review. - Closing the (nuclear) envelope on the genome: how nuclear lamins interact with promoters and modulate gene expression.
Collas P, Lund EG, Oldenburg AR. Collas P, et al. Bioessays. 2014 Jan;36(1):75-83. doi: 10.1002/bies.201300138. Epub 2013 Nov 24. Bioessays. 2014. PMID: 24272858 Review. - Linkage of lamins to fidelity of gene transcription.
Maraldi NM, Lattanzi G. Maraldi NM, et al. Crit Rev Eukaryot Gene Expr. 2005;15(4):277-94. doi: 10.1615/critreveukargeneexpr.v15.i4.10. Crit Rev Eukaryot Gene Expr. 2005. PMID: 16472061 Review.
Cited by
- Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome.
McCord RP, Nazario-Toole A, Zhang H, Chines PS, Zhan Y, Erdos MR, Collins FS, Dekker J, Cao K. McCord RP, et al. Genome Res. 2013 Feb;23(2):260-9. doi: 10.1101/gr.138032.112. Epub 2012 Nov 14. Genome Res. 2013. PMID: 23152449 Free PMC article. - Super-Resolution Imaging of the A- and B-Type Lamin Networks: A Comparative Study of Different Fluorescence Labeling Procedures.
Stiekema M, Ramaekers FCS, Kapsokalyvas D, van Zandvoort MAMJ, Veltrop RJA, Broers JLV. Stiekema M, et al. Int J Mol Sci. 2021 Sep 22;22(19):10194. doi: 10.3390/ijms221910194. Int J Mol Sci. 2021. PMID: 34638534 Free PMC article. - TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends.
Wood AM, Rendtlew Danielsen JM, Lucas CA, Rice EL, Scalzo D, Shimi T, Goldman RD, Smith ED, Le Beau MM, Kosak ST. Wood AM, et al. Nat Commun. 2014 Nov 17;5:5467. doi: 10.1038/ncomms6467. Nat Commun. 2014. PMID: 25399868 Free PMC article. - The emerging role of alternative splicing in senescence and aging.
Deschênes M, Chabot B. Deschênes M, et al. Aging Cell. 2017 Oct;16(5):918-933. doi: 10.1111/acel.12646. Epub 2017 Jul 13. Aging Cell. 2017. PMID: 28703423 Free PMC article. Review. - Actin complexes in the cell nucleus: new stones in an old field.
Castano E, Philimonenko VV, Kahle M, Fukalová J, Kalendová A, Yildirim S, Dzijak R, Dingová-Krásna H, Hozák P. Castano E, et al. Histochem Cell Biol. 2010 Jun;133(6):607-26. doi: 10.1007/s00418-010-0701-2. Epub 2010 May 5. Histochem Cell Biol. 2010. PMID: 20443021 Review.
References
- Barboro P, D'Arrigo C, Diaspro A, Mormino M, Alberti I, Parodi S, Patrone E, Balbi C. Unraveling the organization of the internal nuclear matrix: RNA-dependent anchoring of NuMA to a lamin scaffold. Exp Cell Res. 2002;279:202–18. - PubMed
- Baricheva EA, Berrios M, Bogachev SS, Borisevich IV, Lapik ER, Sharakhov IV, Stuurman N, Fisher PA. DNA from Drosophila melanogaster beta-heterochromatin binds specifically to nuclear lamins in vitro and the nuclear envelope in situ. Gene. 1996;171:171–6. - PubMed
- Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet. 1999;21:285–8. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- R01 AG023776/AG/NIA NIH HHS/United States
- R01 AG023776-05/AG/NIA NIH HHS/United States
- R01 CA031760/CA/NCI NIH HHS/United States
- R01 CA031760-29/CA/NCI NIH HHS/United States
LinkOut - more resources
Full Text Sources