Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture - PubMed (original) (raw)
. 2009 Jan 27;19(2):169-75.
doi: 10.1016/j.cub.2008.12.031.
Affiliations
- PMID: 19167225
- DOI: 10.1016/j.cub.2008.12.031
Free article
Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture
Patrick T Martone et al. Curr Biol. 2009.
Free article
Abstract
Lignified cell walls are widely considered to be key innovations in the evolution of terrestrial plants from aquatic ancestors some 475 million years ago. Lignins, complex aromatic heteropolymers, stiffen and fortify secondary cell walls within xylem tissues, creating a dense matrix that binds cellulose microfibrils and crosslinks other wall components, thereby preventing the collapse of conductive vessels, lending biomechanical support to stems, and allowing plants to adopt an erect-growth habit in air. Although "lignin-like" compounds have been identified in primitive green algae, the presence of true lignins in nonvascular organisms, such as aquatic algae, has not been confirmed. Here, we report the discovery of secondary walls and lignin within cells of the intertidal red alga Calliarthron cheilosporioides. Until now, such developmentally specialized cell walls have been described only in vascular plants. The finding of secondary walls and lignin in red algae raises many questions about the convergent or deeply conserved evolutionary history of these traits, given that red algae and vascular plants probably diverged more than 1 billion years ago.
Similar articles
- The charophycean green algae provide insights into the early origins of plant cell walls.
Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O'Neill MA, Fei Z, Rose JK, Domozych DS, Willats WG. Sørensen I, et al. Plant J. 2011 Oct;68(2):201-11. doi: 10.1111/j.1365-313X.2011.04686.x. Epub 2011 Aug 8. Plant J. 2011. PMID: 21707800 - Cellulose-rich secondary walls in wave-swept red macroalgae fortify flexible tissues.
Martone PT, Janot K, Fujita M, Wasteneys G, Ruel K, Joseleau JP, Estevez JM. Martone PT, et al. Planta. 2019 Dec;250(6):1867-1879. doi: 10.1007/s00425-019-03269-1. Epub 2019 Sep 3. Planta. 2019. PMID: 31482328 - Direct visualization of straw cell walls by AFM.
Yan L, Li W, Yang J, Zhu Q. Yan L, et al. Macromol Biosci. 2004 Feb 20;4(2):112-8. doi: 10.1002/mabi.200300032. Macromol Biosci. 2004. PMID: 15468201 - Lignin engineering.
Vanholme R, Morreel K, Ralph J, Boerjan W. Vanholme R, et al. Curr Opin Plant Biol. 2008 Jun;11(3):278-85. doi: 10.1016/j.pbi.2008.03.005. Epub 2008 Apr 21. Curr Opin Plant Biol. 2008. PMID: 18434238 Review. - Solutions for dissolution--engineering cell walls for deconstruction.
Mansfield SD. Mansfield SD. Curr Opin Biotechnol. 2009 Jun;20(3):286-94. doi: 10.1016/j.copbio.2009.05.001. Epub 2009 May 27. Curr Opin Biotechnol. 2009. PMID: 19481436 Review.
Cited by
- Bifunctional Phenylalanine/Tyrosine Ammonia-Lyase (PTAL) Enhances Lignin Biosynthesis: Implications in Carbon Fixation in Plants by Genetic Engineering.
Yuan Y, Sheng CL, Pang LH, Lu BR. Yuan Y, et al. Biology (Basel). 2024 Sep 22;13(9):742. doi: 10.3390/biology13090742. Biology (Basel). 2024. PMID: 39336169 Free PMC article. - Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts.
Ouahabi S, Daoudi NE, Loukili EH, Asmae H, Merzouki M, Bnouham M, Challioui A, Hammouti B, Fauconnier ML, Rhazi L, Ayerdi Gotor A, Depeint F, Ramdani M. Ouahabi S, et al. Mar Drugs. 2024 May 25;22(6):240. doi: 10.3390/md22060240. Mar Drugs. 2024. PMID: 38921551 Free PMC article. - Structural characterization of the extracellular stalk material of the diatom Didymosphenia geminata.
Dütsch L, Brendler E, Zuber J, Viehweger C, Ehrlich H, Jesionowski T, Vogt C. Dütsch L, et al. Anal Bioanal Chem. 2024 Aug;416(19):4341-4352. doi: 10.1007/s00216-024-05370-1. Epub 2024 Jun 10. Anal Bioanal Chem. 2024. PMID: 38856911 Free PMC article. - Comparative transcriptome analysis between two different cadmium-accumulating genotypes of soybean (Glycine max) in response to cadmium stress.
Liu X, Zhang H, Zhang W, Jia Q, Chen X, Chen H. Liu X, et al. BMC Genom Data. 2024 May 7;25(1):43. doi: 10.1186/s12863-024-01226-w. BMC Genom Data. 2024. PMID: 38710997 Free PMC article. - Preparation of β(1→3)/β(1→4) xylooligosaccharides from red alga dulse by two xylanases from Streptomyces thermogriseus.
Fujii Y, Kobayashi M, Miyabe Y, Kishimura H, Hatanaka T, Kumagai Y. Fujii Y, et al. Bioresour Bioprocess. 2021 May 12;8(1):38. doi: 10.1186/s40643-021-00390-6. Bioresour Bioprocess. 2021. PMID: 38650209 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources