Cellular stress and RNA splicing - PubMed (original) (raw)
Review
Cellular stress and RNA splicing
Giuseppe Biamonti et al. Trends Biochem Sci. 2009 Mar.
Free article
Abstract
In response to physical and chemical stresses that affect protein folding and, thus, the execution of normal metabolic processes, cells activate gene-expression strategies aimed at increasing their chance of survival. One target of several stressing agents is pre-mRNA splicing, which is inhibited upon heat shock. Recently, the molecular basis of this splicing inhibition has begun to emerge. Interestingly, different mechanisms seem to be in place to block constitutive pre-mRNA splicing and to affect alternative splicing regulation. This could be important to modulate gene expression during recovery from stress. Thus, pre-mRNA splicing emerges as a central mechanism to integrate cellular and metabolic stresses into gene-expression profiles.
Similar articles
- A complex signaling pathway regulates SRp38 phosphorylation and pre-mRNA splicing in response to heat shock.
Shi Y, Manley JL. Shi Y, et al. Mol Cell. 2007 Oct 12;28(1):79-90. doi: 10.1016/j.molcel.2007.08.028. Mol Cell. 2007. PMID: 17936706 - Hsp27 enhances recovery of splicing as well as rephosphorylation of SRp38 after heat shock.
Marin-Vinader L, Shin C, Onnekink C, Manley JL, Lubsen NH. Marin-Vinader L, et al. Mol Biol Cell. 2006 Feb;17(2):886-94. doi: 10.1091/mbc.e05-07-0596. Epub 2005 Dec 7. Mol Biol Cell. 2006. PMID: 16339078 Free PMC article. - Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock.
Shin C, Feng Y, Manley JL. Shin C, et al. Nature. 2004 Feb 5;427(6974):553-8. doi: 10.1038/nature02288. Nature. 2004. PMID: 14765198 - Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses.
Reddy AS, Shad Ali G. Reddy AS, et al. Wiley Interdiscip Rev RNA. 2011 Nov-Dec;2(6):875-89. doi: 10.1002/wrna.98. Epub 2011 Jul 15. Wiley Interdiscip Rev RNA. 2011. PMID: 21766458 Review. - Pre-mRNA splicing in the new millennium.
Hastings ML, Krainer AR. Hastings ML, et al. Curr Opin Cell Biol. 2001 Jun;13(3):302-9. doi: 10.1016/s0955-0674(00)00212-x. Curr Opin Cell Biol. 2001. PMID: 11343900 Review.
Cited by
- A Study into the Evolutionary Divergence of the Core Promoter Elements of PRPF31 and TFPT.
Rose AM, Shah AZ, Alfano G, Bujakowska KM, Barker AF, Robertson JL, Rahman S, Sánchez LV, Diaz-Corrales FJ, Chakarova CF, Krishna A, Bhattacharya SS. Rose AM, et al. J Mol Genet Med. 2013 Aug;7(2):1000067. doi: 10.4172/1747-0862.1000067. J Mol Genet Med. 2013. PMID: 25729402 Free PMC article. - Stress-Induced Eukaryotic Translational Regulatory Mechanisms.
Mir DA, Ma Z, Horrocks J, Rogers A. Mir DA, et al. J Clin Med Sci. 2024;8(2):1000277. Epub 2024 Jun 24. J Clin Med Sci. 2024. PMID: 39364184 Free PMC article. - Proteomics Analysis of Proteotoxic Stress Response in In-Vitro Human Neuronal Models.
Alaiya A, Alharbi BM, Shinwari Z, Rashid M, Albinhassan TH, Bouchama A, Alwesmi MB, Mohammad S, Malik SS. Alaiya A, et al. Int J Mol Sci. 2024 Jun 20;25(12):6787. doi: 10.3390/ijms25126787. Int J Mol Sci. 2024. PMID: 38928492 Free PMC article. - Systemic cold stress adaptation of Chlamydomonas reinhardtii.
Valledor L, Furuhashi T, Hanak AM, Weckwerth W. Valledor L, et al. Mol Cell Proteomics. 2013 Aug;12(8):2032-47. doi: 10.1074/mcp.M112.026765. Epub 2013 Apr 5. Mol Cell Proteomics. 2013. PMID: 23564937 Free PMC article. - Global protein phosphorylation dynamics during deoxynivalenol-induced ribotoxic stress response in the macrophage.
Pan X, Whitten DA, Wu M, Chan C, Wilkerson CG, Pestka JJ. Pan X, et al. Toxicol Appl Pharmacol. 2013 Apr 15;268(2):201-11. doi: 10.1016/j.taap.2013.01.007. Epub 2013 Jan 23. Toxicol Appl Pharmacol. 2013. PMID: 23352502 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources